996 resultados para ANTIGEN LEVEL
Resumo:
Aim of the study: This study assessed the involvement of endogenous glucocorticoids (GCs) in the anti-arthritic properties of bee venom (BV) on antigen-induced arthritis (AIA) in rabbits. Materials and methods: BV (1.5-6 mu g/kg/day) was injected for 7 days before AIA induction, whereas the control group received sterile saline. The total and differential leukocyte count. PGE(2) levels in synovial fluid and synovial membrane cell infiltrate were evaluated. The contribution of GCs to BV action was assessed in rabbits treated with BV plus metyrapone, an inhibitor of GC synthesis, or RU-38 486, a steroid antagonist. Results: Treatment with BV (1.5 mu g/kg/day) reduced the leukocyte count and PGE2 level (18571 +/- 1909 cells/mm(3) and 0.49 +/- 0.05 ng/mL, respectively) as well as the cellular infiltrate compared with the control group (40968 +/- 5248 cells/mm(3) and 2.92 +/- 0.68 ng/mL, p < 0.05). The addition of metyrapone to BV treatment completely reversed the inhibition of AIA, whereas RU-38 486 was ineffective. Conclusion: Our data show that bee venom treatment prevents the development of antigen-induced arthritis in rabbits through the action of GCs. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
PURPOSE: Carcinoembriogenic antigen (CEA) is the most frequently used tumor marker in rectal cancer. A decrease in carcinoembriogenic antigen after radical surgery is associated with survival in these patients. Neoadjuvant chemoradiotherapy may lead to significant primary tumor downstaging, including complete tumor regression in selected patients. Therefore, we hypothesized that a decrease in CEA after neoadjuvant chemoradiotherapy could reflect tumor response to chemoradiotherapy, affecting final disease stage and ultimately survival. METHODS: Patients with distal rectal cancer managed by neoadjuvant chemoradiotherapy and available pretreatment and postchemoradiotherapy levels of CEA were eligible for the study. Outcomes studied included final disease stage, relapse, and survival, and these were compared according to initial CEA level, postchemoradiotherapy CEA level, and the reduction in CEA. RESULTS: Overall 170 patients were included. Postchemoradiotherapy CEA levels < 5 ng/ml were associated with increased rates of complete clinical response and pathologic response. Additionally, postchemoradiotherapy CEA levels < 5 ng/ml were associated with increased overall and disease-free survival (P = 0.01 and P = 0.03). There was no correlation between initial CEA level or reduction in CEA and complete response or survival. CONCLUSION: A postchemoradiotherapy CEA level < 5 ng/ml is a favorable prognostic factor for rectal cancer and is associated with increased rates of earlier disease staging and complete tumor regression. Postchemoradiotherapy CEA levels may be useful in decision making for patients who may be candidates for alterative treatment strategies.
Resumo:
To determine which species and populations of Anopheles transmit malaria in any given situation, immunological assays for malaria sporozoite antigen can replace traditional microscopical examination of freshly dissected Anopheles. We developed a wicking assay for use with mosquitoes that identifies the presence or absence of specific peptide epitopes of circumsporozoite (CS) protein of Plasmodium falciparum and two strains of Plasmodium vivax (variants 210 and 247). The resulting assay (VecTest(TM) Malaria) is a rapid, one-step procedure using a 'dipstick' test strip capable of detecting and distinguishing between P. falciparum and P. vivax infections in mosquitoes. The objective of the present study was to test the efficacy, sensitivity, stability and field-user acceptability of this wicking dipstick assay. In collaboration with 16 test centres world-wide, we evaluated more than 40 000 units of this assay, comparing it to the standard CS ELISA. The 'VecTest(TM) Malaria' was found to show 92% sensitivity and 98.1% specificity, with 97.8% accuracy overall. In accelerated storage tests, the dipsticks remained stable for >15 weeks in dry conditions up to 45degreesC and in humid conditions up to 37degreesC. Evidently, this quick and easy dipstick test performs at an acceptable level of reliability and offers practical advantages for field workers needing to make rapid surveys of malaria vectors.
Resumo:
In order to evaluate the potential allergenicity of Blomia tropicalis (Bt) antigen, IgE production of both specific and non-specific for Bt antigen was monitored in BALB/c mice after exposure to the antigen by nasal route. It was evidenced that B. tropicalis contains a functional allergen in its components. The allergenic components, however, when administered intranasally without any adjuvant, did not function to induce IgE response within a short period. On the other hand, intranasal inoculation of Bt antigens augmented serum IgE responses in mice pretreated by a subcutaneous priming injection of the same antigens. Inoculation of Bt antigen without subcutaneous priming injections induced IgE antibody production only when the antigen was continuously administered for a long period of over 24 weeks. Even when the priming injection was absent, the Bt antigen inoculated with cholera toxin (CT) as a mucosal adjuvant also significantly augmented the Bt antigen-specific IgE responses depending on the dose of CT co-administered. The present study also demonstrated that Bt antigen/CT-inoculated mice showed increased non-specific serum IgE level and peripheral blood eosinophil rates without noticeable elevations of the total leukocyte counts. The immunoblot analysis demonstrated 5 main antigenic components reactive to IgE antibodies induced. These components at about 44-64 kDa position were considered to be an important candidate antigen for diagnosis of the mite-related allergy.
Resumo:
Conjugates of goat anti-HBs IgG and horseradish peroxidase (HRP) prepared by two different methods, one using NaIO4 and the other SPDP, were compared. Anti-HBs antibodies obtained from goat, rabbit and guinea-pig were tested as capture serum. The ELISA showed a sensitivity similar to RIA and a level of antigen captation ranging from 4.37 to 8.75 nanograms/ml was obtained when rabbit or guinea-pig captures were used combined with both NaIO4 or SPDP conjugates.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.
Resumo:
Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.
Resumo:
The common acute lymphoblastic leukemia antigen (CALLA) has been detected in biological fluids using a radioimmunoassay based on the inhibition of binding of 125I-labeled monoclonal anti-CALLA antibody to glutaraldehyde-fixed NALM-1 cells. With this assay, we showed first that CALLA was released in culture fluids from NALM-1 and Daudi cell lines but was absent from culture fluids from CALLA negative cell lines. Then, we found that the sera of 34 out of 42 patients (81%) with untreated common acute lymphoblastic leukemia (c-ALL) contained higher CALLA levels than any of the 42 serum samples from healthy controls. The specificity of these results was further demonstrated by testing in parallel the sera from 48 patients with CALLA negative leukemias, including 26 acute myeloid leukemia (AML), 12 T-cell acute lymphoblastic leukemia (T-ALL), and 10 acute undifferentiated leukemia (AUL). All of these sera gave negative results, except for one patient with AUL, who had a significantly elevated circulating CALLA level, and one patient with AML, who had a borderline CALLA level, 3 SD over the mean of the normal sera. Preliminary results suggest that circulating CALLA is associated with membrane fragments or vesicles, since the total CALLA antigenic activity was recovered in the pellet of the serum samples centrifuged at 100,000 g. In addition, the CALLA-positive pellets contained an enzyme considered as a membrane marker, 5'-nucleotidase. Evaluation of the clinical importance of repeated serum CALLA determinations for the monitoring of c-ALL patients deserves further investigation.
Resumo:
The purpose of this study was to examine the circulating filarial antigen (CFA) detected by the monoclonal antibody (mAb) Og4C3-ELISA in paired samples of serum and hydrocele fluid from 104 men with hydrocele, living in an endemic area of Wuchereria bancrofti. Nocturnal blood specimens were filtered and examined for microfilariae (MF) and ultrasound was used in order to identify the presence of adult worms (the filaria dance sign - FDS) in the lymphatic vessels of the scrotal area. Four groups were selected according to their parasitological status: group I - 71 MF- and FDS-; group II - 21 MF+ and FDS+; group III - 10 MF- and FDS+ and group IV- 2 MF+ and FDS-. CFA was identified simultaneously (fluid and serum) in 11 (15.5%), 21 (100%), 3 (30%), and 1 (50%) in groups I, II, III, and IV, respectively. In despite of high CFA+ level (antigen Og4C3) units/ml, the Geometrical Mean (GM) = 2696) in the sera of these 36/104 paired samples, when compared to the hydrocele fluid, (GM = 1079), showed a very good correlation between the CFA level in the serum and CFA level in the fluid (r = 0.731). CFA level in the serum of the 23 microfilaremics (groups II and IV) was extremely high (GM = 4189) and was correlated with MF density (r = 0.442). These findings report for the first time the potential alternative use of the hydrocele fluid to investigate CFA using the mAb Og4C3-ELISA.
Resumo:
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Resumo:
Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a). Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a) was observed.
Resumo:
Activated CD8 T cells develop cytotoxicity against autologous cells bearing foreign Ags and self/tumor Ags. However, self-specific cytolysis needs to be kept under control to avoid overwhelming immunopathology. After peptide vaccination of melanoma patients, we studied molecular and functional properties of T cell subsets specific for the self/tumor Ag Melan-A/MART-1. Ex vivo analysis revealed three Ag-specific effector memory (EM) populations, as follows: CD28-negative EM (EM28(-)) T cells strongly expressing granzyme/perforin, and two EM28(+) subsets, one with high and the other with low level expression of these cytotoxic proteins. For further functional characterization, we generated 117 stable CD8 T cell clones by ex vivo flow cytometry-based sorting of these subsets. All EM28(-)-derived clones lysed target cells with high efficacy. In contrast, EM28(+)-derived clones were heterogenous, and could be classified in two groups, one with high and the other with low killing capacity, correlating with granzyme/perforin expression. High and low killer phenotypes remained surprisingly stable for several months. However, strongly increased granzyme expression and cytotoxicity were observed after exposure to IL-12. Thus, the data reveal a newly identified subset of CD28(+) conditional killer T cells. Because CD28 can mediate strong costimulatory signals, tight cytotoxicity control, as shown in this study through IL-12, may be particularly important for subsets of T cells expressing CD28.
Resumo:
In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3) were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST). The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL), but interleukin (IL)-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6%) was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj) ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.
Resumo:
BACKGROUND: Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. METHODOLOGY/FINDINGS: We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. CONCLUSION/SIGNIFICANCE: Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating humoral responses against erythrocytic invasion and development.