940 resultados para ANTI-AVERSIVE ACTION
Resumo:
For six decades tetracyclines have been successfully used for their broad spectrum antibiotic effects. However, non-antibiotic effects of tetracyclines have been reported. The anti-inflammatory effects of tetracycline drugs have been investigated in the context of a range of inflammatory diseases including sepsis and a number of neurodegenerative diseases. This thesis investigates the effects of a range of clinically important tetracyclines (oxytetracycline, doxycycline, minocycline and tigecycline) on the ability of the J774.2 cell line to produce nitric oxide when stimulated with the bacterial cell wall component, LPS. The proteome of J774.2 cells was analysed in response to LPS stimulation (1 µg/ml) with and without prior treatment with minocycline (50µg/ml), this allows the unbiased analysis of the cellular proteome in response to minocycline and LPS, protein spots of interest were excised and identified by nano-electrospray ionisation-linear ion trap mass spectroscopy. All of the tetracyclines that were investigated inhibited LPS-induced nitric oxide production in a dose dependent manner and this was due to the inhibition of inducible nitric oxide synthase expression. This is the first report to show that tigecycline inhibits inducible nitric oxide expression and nitric oxide production. Using two-dimensional gel electrophoresis and total protein staining eleven proteins were identified as being modulated by LPS. Of these eleven proteins; expression of some, but not all was modulated when the cells received a prior treatment with minocycline suggesting that minocycline does not completely block LPS-induced macrophage activation but probably specifically acts on particular inflammatory signaling pathways in macrophages. Three protein spots with a similar molecular weight but different pI values identified in this proteomic study were identified as ATP synthase ß chain. These different protein spots probably correspond to different phosphorylation states of the protein, suggesting that minocycline affects the balance of protein kinase and protein phosphatase activity in the immune response.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
It is well known that excitatory amino acids induce unconditioned fear responses when locally injected into the dorsal periaqueductal gray matter (dPAG). However, there are only few studies about the involvement of excitatory amino acids mediation in dPAG in the expression of conditioned fear. The present series of experiments evaluates the participation of AMPA/Kainate and NMDA glutamatergic receptors of dPAG in the expression of conditioned fear, assessed by the fear-potentiated startle (FPS) and conditioned freezing responses. Wistar rats were subjected to fear conditioning to light. Twenty-four hours later, they received intra-dPAG injections of kainic acid or NMDA (AMPA/Kainate and NMDA agonists) and 1,2,3,4-Tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium salt hydrate (NBQX) or D(-)-2-Amino-7-phosphonoheptanoic acid (APT) (AMPA/Kainate and NMDA antagonists) and were submitted to the FPS test. Conditioned freezing response was simultaneously measured. Effects of drug treatment on motor activity were evaluated in the open-field test. Intra-dPAG injections of glutamatergic agonists enhanced conditioned freezing and promoted pro-aversive effects in the FPS. Lower doses of the agonists had no effect or enhanced FPS whereas higher doses disrupted FPS, indicating a non-monotonic relationship between fear and FPS. The antagonist NBQX had no significant effects while AP7 decreased conditioned freezing but did not affect FPS. Both antagonists reduced the effects of the agonists. The obtained results cannot be attributed to motor deficits. The results suggest an important role of the AMPA/Kainate and NMDA mechanisms of the dPAG in the expression of conditioned freezing and FPS. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Daikon and radish sprouts contain high levels of glucoraphenin, a glucosinolate which hydrolyses to form sulphoraphene. Sulphoraphene, like sulphoraphane from broccoli, is a potent inducer of phase 2 detoxification enzymes and consequently has potential anti-cancer action. Unlike broccoli however, daikon and radish do not possess epithiospecifier protein, a protein that inhibits conversion of glucosinolates to isothiocyanates, and consequently they may represent more suitable sources of phyto-chemicals with anti-cancer potential. Concentrations of glucoraphenin were highest in the seed, declining exponentially with sprout development. The rate of decline was observed to vary considerably between varieties of daikon and radish, with some varieties maintaining significantly high levels of glucoraphenin. Varieties maintaining a high level of glucoraphenin included 'Cherry Belle' and 'French Breakfast'.
Resumo:
Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.
Resumo:
O ambiente marinho é um dos ecossistemas mais diversos e complexos em termos de biodiversidade. As condições químicas, físicas e biológicas desse ambiente favorecem a produção de uma variedade de substâncias pela biota, transformando os produtos naturais marinhos em um dos recursos promissores na pesquisa por novos compostos bioativos. O gênero Tubastraea (Scleractinia, Dendrophylliidae) inclui corais ahermatípicos que produzem compostos secundários bioativos em situações de competição. No estado do Rio de Janeiro são encontradas duas espécies invasoras desse gênero, Tubastraea coccinea e Tubastraea tagusensis. A primeira é amplamente distribuída nas águas tropicais do Atlântico e do Pacífico, e a segunda é nativa do leste do pacífico, ambas invasoras no Atlântico Sul. Este trabalho objetiva avaliar as atividades anti-inflamatória, antioxidante e toxicológica de extratos metanólicos de T. coccinea e T. tagusensis. As colônias de Tubastraea foram coletadas na Baía de Ilha Grande, Rio de Janeiro - Brasil e extraídas com metanol. A caracterização química foi realizada através da espectroscopia ultravioleta, visível e de infravermelho. Ação anti-inflamatória foi avaliada pelo modelo in vivo de edema em pata de camundongo induzido por carragenina. Atividade sequestrante de radicais livres foi avaliada pelo método do DPPH. Na avaliação toxicológica utilizamos o ensaio Salmonella/microssoma, na presença e ausência de ativação metabólica exógena, o teste in vitro de micronúcleo com células de macrófagos de rato e o teste de mortalidade com o microcrustáceo Artemia salina. Foi possível a distinção dos grupos químicos presentes nos extratos, com os resultados encontrados sendo corroborados com os presentes na literatura. Os extratos de ambas as espécies apresentaram inibição significativa no edema da pata nas doses testadas, em relação ao veículo. Ambos os extratos demonstraram capacidade pela captura do radical DPPH. Atividades citotóxica e mutagênica na ausência de metabolização exógena não foram observadas para as linhagens TA97, TA98 e TA102 nas duas espécies; para a TA100 o extrato de T. coccinea induziu citotoxidade na concentração de 50 g/placa. Os dois extratos induziram citotoxicidade na presença de metabolização exógena para a cepa TA98, tendo sido detectada também indução de mutagenicidade nesta linhagem para T. coccinea. Os extratos não foram capazes de induzir a formação de micronúcleos e não foram tóxicos para o microcrustáceo A. salina. A resposta inibitória do edema após 2 h da indução indica que os compostos presentes nos extratos atuam na segunda fase da inflamação, possivelmente pela inibição da produção de prostaglandinas. Os resultados sugerem que os extratos das espécies T. coccinea e T. tagusensis apresentam substâncias com potencial uso farmacológico, como agente anti-inflamatório e antioxidante.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating (RI) protein possessing multiple biological and pharmacological activities. Its major action is inhibition of human immunodeficiency virus (HIV) replication but the mechanism is still elusive. All evidences showed that this action is related to its RI activity. Previous studies found that TCS mutants with reduced RI activity simultaneously lost some anti-HIV activity. In this study, an exception was demonstrated by two TCS mutants retaining almost all RI activity but were devoid of anti-HIV-1 activity. Five mutants were constructed by using site-directed mutagenesis with either deletion or addition of amino acids to the C-terminal sequence. Results showed that the RI activity of mutants with C-terminal deletion mutants (TCSC2, TCSC4, and TCSC14) decreased by 1.2-3.3-fold with parallel downshifting of its anti-HIV-1 activity (1.4-4.8-fold). Another two mutants, TCSC19aa and TCSKDEL having 19 amino acid extension and a KDEL signal sequence added to the C-terminal sequence, retained all RI activity but subsequently lost most of the anti-HIV-1 activity. These findings suggested that ribosome inactivation alone might not be adequate to explain the anti-HIV action of TCS. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
MicroARN (miARN) ont récemment émergé comme un acteur central du gène réseau de régulation impliqués dans la prise du destin cellulaire. L'apoptose, un actif processus, par lequel des cellules déclenchent leur auto-destruction en réponse à un signal, peut être contrôlé par les miARN. Il a également été impliqué dans une variété de maladies humaines, comme les maladies du cœur, et a été pensé comme une cible pour le traitement de la maladie. Tanshinone IIA (TIIA), un monomère de phenanthrenequinones utilisé pour traiter maladies cardiovasculaires, est connu pour exercer des effets cardioprotecteurs de l'infarctus du myocarde en ciblant l'apoptose par le renforcement de Bcl-2 expression. Pour explorer les liens potentiels entre le miARN et l'action anti-apoptotique de TIIA, nous étudié l'implication possible des miARN. Nous avons constaté que l'expression de tous les trois membres de la famille miR-34, miR-34a, miR-34b et miR-34c ont été fortement régulée à la hausse après l'exposition soit à la doxorubicine, un agent endommageant l'ADN ou de pro-oxydant H2O2 pendant 24 heures. Cette régulation à la hausse causé significativement la mort cellulaire par apoptose, comme déterminé par fragmentation de l'ADN, et les effets ont été renversés par les ARNs antisens de ces miARN. Le prétraitement des cellules avec TIIA avant l'incubation avec la doxorubicine ou H2O2 a empêché surexpression de miR-34 et a réduit des apoptose. Nous avons ensuite établi BCL2L2, API5 et TCL1, en plus de BCL2, comme les gènes nouveaux cibles pour miR-34. Nous avons également élucidé que la répression des ces gènes par MiR-34 explique l'effet proapoptotique dans les cardiomyocytes. Ce que la régulation positive de ces gènes par TIIA realisée par la répression de l'expression de miR-34 est probable le mécanisme moléculaire de son effet bénéfique contre ischémique lésions cardiaques.
Resumo:
Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.
Resumo:
Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.
Resumo:
Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT1A receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 mug in 0.1 mul) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience. The effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions, were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 mug) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT1A autoreceptor blockade in the MRN cannot be accounted fur by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT1A receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects or 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)