940 resultados para ANISOTROPIC SILVER NANOPARTICLES
Resumo:
Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We are reporting a novel green approach to incorporate silver nanoparticles (NPs) selectively in the polyelectrolyte capsule shell for remote opening of polyelectrolyte capsules. This approach involves in situ reduction of silver nitrate to silver NPs using PEG as a reducing agent (polyol reduction method). These nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by the synthesis of silver NPs and subsequently the dissolution of the silica core. The size of silver nanoparticles synthesized was 60 +/- 20 nm which increased to 100 +/- 20 nm when the concentration of AgNO3 increased from 25 mM to 50 mM. The incorporated silver NPs induced rupture and deformation of the capsules under laser irradiation. This method has advantages over other conventional methods involving chemical agents that are associated with cytotoxicity in biological applications such as drug delivery and catalysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the present study, silver nanoparticles were rapidly synthesized by treating silver ions with Citrus limon (lemon) extract at higher temperature. The effect of process parameters like reductant concentration, mixing ratio of the reactants, concentration of silver nitrate and heating time period were studied. The formation of silver nanoparticles was confirmed by surface plasmon resonance as determined by UV-visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. Nanoparticles below 50 nm with spherical and spheroidal shape were observed from microscopic studies. The study offers a rapid method to synthesize silver nanoparticles within ten minutes of interaction with the bio-reductant.
Resumo:
Cotton is a widely used raw material for textiles but drawbacks regarding their poor mechanical properties often limit their applications as functional materials. The present investigation involved process development for one step coating of cotton with silver nanoparticles (SNP) synthesized using Azadirachta indica and Citrus limon extract to develop functional textiles. Addition of starch to functional textiles led to efficient binding of nanoparticles to fabric and led to drastic decrease in release of silver from fabricated textiles after ten washing cycles enhancing their environment friendliness. Differential scanning calorimetry, scanning electron microscopy, FT-IR analysis and mechanical studies demonstrated efficient binding of nanoparticles to fabric through bio-based processes. The functionalized textiles developed by the bio-based methods showed significant antibacterial activity against E. coli and S. aureus (with 99% microbial reduction). Present work offers a simple procedure for coating SNP using bio-based approaches with promising applications in specialized functions.
Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo
Resumo:
The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Resumo:
We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 +/- 5 nm, which increased to 40 +/- S nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 degrees C near their pK(a) values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.
Resumo:
Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and potential measurements.
Resumo:
Hybrid nanocomposites of polycaprolactone (PCL) with multiwall carbon nanotubes (MWNTs) and silver nanoparticles (nAg) were prepared by melt mixing. Synergetic effect of the two nanofillers (MWNT and nAg) in PCL matrix was evaluated for dielectric and antibacterial properties. Dielectric results showed that the addition of nAg as filler in PCL matrix (PCL/nAg) had no effect on conductivity, whereas addition of MWNT in PCL matrix (PCL/MWNT) caused a sharp increase in conductivity of PCL. Interestingly, the hybrid nanocomposite (PCL/MWNT/nAg) incorporating MWNT and nAg also exhibited high electrical conductivity. The hybrid composite was found to have antibacterial property similar to that of PCL/nAg composite for lower loading of nAg. This study demonstrates that the synergetic interaction of the nanofillers in the hybrid nanocomposite improves both electrical conductivity and antibacterial properties of PCL.
Resumo:
Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (<= 1 ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as lm-n-lm], 2Br(-) (n = 2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units -(CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as Im-n-Im], 2Br(-) (n = 2, 5,6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units (CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.