70 resultados para ANEMOMETERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an investigation of the behavior of suction surface boundary layers in a modern multistage Low Pressure turbine. An array of eighteen surface-mounted hot-film anemometers was mounted on a stator blade of the third stage of a 4-stage machine. Data were obtained at Reynolds numbers between 0.9 × 105 and 1.8 × 105 and 1.8 × 105. At the majority of the test conditions, wakes from upstream rotors periodically initiated transition at about 40% surface length. In between these events, laminar separation occurred at about 75% surface length. It is inferred that the effect of the wakes on the performance of the bladerow is limited and that steady flow design methods should provide an adequate assessment of LP turbine performance during design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an investigation of the behavior of suction surface boundary layers in a modern multistage Low-Pressure turbine. An array of 18 surface-mounted hot-film anemometers was mounted on a stator blade of the third stage of a four-stage machine. Data were obtained at Reynolds numbers between 0.9 × 105 and 1.8 × 105. At the majority of the test conditions, wakes from upstream rotors periodically initiated transition at about 40 percent surface length. In between these events, laminar separation occurred at about 75 percent surface length. Because the wake-affected part of the flow appeared to be only intermittently turbulent, laminar separation also occurred at about 75 percent surface length while this flow was instantaneously laminar. At all but the lowest Reynolds numbers, the time-mean boundary layer appeared to have re-attached by the trailing edge even though it was not fully turbulent. It is inferred that the effect of the wakes on the performance of the blade row is limited and that steady flow design methods should provide an adequate assessment of LP turbine performance during design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a study of the development of the three-dimensional flowfield within the rotor blades of a low-speed, large-scale axial flow turbine. Measurements have been performed in the rotating and stationary frames of reference. Time-mean data have been obtained using miniature five-hole pneumatic probes, whereas the unsteady development of the flow has been determined using three-axis subminiature hot-wire anemometers. Additional information is provided by the results of blade-surface flow-visualization experiments and surface-mounted hot-film anemometers. The development of the stator exit flow, as it passes through the rotor blades, is described. Unsteady data suggest that the presence of the rotor secondary and tip leakage flows restricts the region of unsteady interaction to near midspan when the stator wakes and secondary flows are adjacent to the suction surface. Surface-mounted hot-film data show that this affects the suction-side laminar-turbulent transition process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow along rivers, an integral part of many cities, might provide a key mechanism for ventilation – which is important for air quality and heat stress. Since the flow varies in space and time around rivers, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D flow in locations which are hard to observe. For three months in the winter and spring of 2011, the atmospheric flow above the River Thames in central London was observed using a scanning Doppler lidar, a dual-beam scintillometer and sonic anemometry. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s–1) as comparisons between sonic anemometers (0.35–0.73 m s–1). Second, the lidar duo-beam scanning strategy provided horizontal transects of wind vectors comparison with scintillometer rmse 1.12–1.63 m s–1) which revealed mean and turbulent flow across the river and surrounds; in particular: chanelling flow along the river and turbulence changes consistent with the roughness changes between built to river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on bankside roads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical divergence of CO2 fluxes is observed over two Midwestern AmeriFlux forest sites. The differences in ensemble averaged hourly CO2 fluxes measured at two heights above canopy are relatively small (0.2–0.5 μmol m−2 s−1), but they are the major contributors to differences (76–256 g C m−2 or 41.8–50.6%) in estimated annual net ecosystem exchange (NEE) in 2001. A friction velocity criterion is used in these estimates but mean flow advection is not accounted for. This study examines the effects of coordinate rotation, averaging time period, sampling frequency and co-spectral correction on CO2 fluxes measured at a single height, and on vertical flux differences measured between two heights. Both the offset in measured vertical velocity and the downflow/upflow caused by supporting tower structures in upwind directions lead to systematic over- or under-estimates of fluxes measured at a single height. An offset of 1 cm s−1 and an upflow/downflow of 1° lead to 1% and 5.6% differences in momentum fluxes and nighttime sensible heat and CO2 fluxes, respectively, but only 0.5% and 2.8% differences in daytime sensible heat and CO2 fluxes. The sign and magnitude of both offset and upflow/downflow angle vary between sonic anemometers at two measurement heights. This introduces a systematic and large bias in vertical flux differences if these effects are not corrected in the coordinate rotation. A 1 h averaging time period is shown to be appropriate for the two sites. In the daytime, the absolute magnitudes of co-spectra decrease with height in the natural frequencies of 0.02–0.1 Hz but increase in the lower frequencies (<0.01 Hz). Thus, air motions in these two frequency ranges counteract each other in determining vertical flux differences, whose magnitude and sign vary with averaging time period. At night, co-spectral densities of CO2 are more positive at the higher levels of both sites in the frequency range of 0.03–0.4 Hz and this vertical increase is also shown at most frequencies lower than 0.03 Hz. Differences in co-spectral corrections at the two heights lead to a positive shift in vertical CO2 flux differences throughout the day at both sites. At night, the vertical CO2 flux differences between two measurement heights are 20–30% and 40–60% of co-spectral corrected CO2 fluxes measured at the lower levels of the two sites, respectively. Vertical differences of CO2 flux are relatively small in the daytime. Vertical differences in estimated mean vertical advection of CO2 between the two measurement heights generally do not improve the closure of the 1D (vertical) CO2 budget in the air layer between the two measurement heights. This may imply the significance of horizontal advection. However, a reliable assessment of mean advection contributions in annual NEE estimate at these two AmeriFlux sites is currently an unsolved problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHERMAN, D.J.; LI, B.; FERRELL E.J.; ELLIS, J.T.; COX, W.D.; MAIA, L.P., and SOUSA, P.H.G.O., 2011. Measuring Aeolian Saltation: A Comparison of Sensors. In: Roberts, T.M., Rosati, J.D., and Wang, P. (eds.), Proceedings, Symposium to Honor Dr. Nicholas C. Kraus, Journal of Coastal Research, Special Issue, No. 59, pp. 280-290. West Palm Beach (Florida), ISSN 0749-0208. We report the results of field experiments designed to compare four types of aeolian saltation sensors: the Safire; the Wenglor (R) Particle Counter; the Miniphone; and the Buzzer Disc. Sets of sensors were deployed in tight spatial arrays and sampled at rates as fast as 20 kHz. In two of the three trials, the data from the sensors are compared to data obtained from sand traps. The Miniphone and the Buzzer Disc, based on microphone and piezoelectric technologies, respectively, produced grain impact counts comparable to those derived from the trap data. The Satire and the Wenglor (R) Particle Counter produce count rates that were an order of magnitude too slow. Satires undercount because of their large momentum threshold and because its signal is saturated at relatively slow transport rates. We conclude that the Miniphone and the Buzzer Disc are appropriate for deployment as grain counters because their small size allows them to be installed in closely-spaced sets.