867 resultados para ALTERNATIVE EXONS
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
Spermatogenesis is a temporally regulated developmental process by which the gonadotropin-responsive somatic Sertoli and Leydig cells act interdependently to direct the maturation of the germinal cells. The metabolism of Sertoli and Leydig cells is regulated by the pituitary gonadotropins FSH and LH, which, in turn, activate adenylate cyclase. Because the cAMP-second messenger pathway is activated by FSH and LH, we postulated that the cAMP-responsive element-binding protein (CREB) plays a physiological role in Sertoli and Leydig cells, respectively. Immunocytochemical analyses of rat testicular sections show a remarkably high expression of CREB in the haploid round spermatids and, to some extent, in pachytene spermatocytes and Sertoli cells. Although most of the CREB antigen is detected in the nuclei, some CREB antigen is also present in the cytoplasm. Remarkably, the cytoplasmic CREB results from the translation of a unique alternatively spliced transcript of the CREB gene that incorporates an exon containing multiple stop codons inserted immediately up-stream of the exons encoding the DNA-binding domain of CREB. Thus, the RNA containing the alternatively spliced exon encodes a truncated transcriptional transactivator protein lacking both the DNA-binding domain and nuclear translocation signal of CREB. Most of the CREB transcripts detected in the germinal cells contain the alternatively spliced exon, suggesting a function of the exon to modulate the synthesis of CREB. In the Sertoli cells we observed a striking cyclical (12-day periodicity) increase in the levels of CREB mRNA that coincides with the splicing out of the restrictive exon containing the stop codons. Because earlier studies established that FSH-stimulated cAMP levels in Sertoli cells are also cyclical, and the CREB gene promoter contains cAMP-responsive enhancers, we suggest that the alternative RNA splicing controls a positive autoregulation of CREB gene expression mediated by cAMP.
Resumo:
Alternative splicing (AS) has the potential to greatly expand the functional repertoire of mammalian transcriptomes. However, few variant transcripts have been characterized functionally, making it difficult to assess the contribution of AS to the generation of phenotypic complexity and to study the evolution of splicing patterns. We have compared the AS of 309 protein-coding genes in the human ENCODE pilot regions against their mouse orthologs in unprecedented detail, utilizing traditional transcriptomic and RNAseq data. The conservation status of every transcript has been investigated, and each functionally categorized as coding (separated into coding sequence [CDS] or nonsense-mediated decay [NMD] linked) or noncoding. In total, 36.7% of human and 19.3% of mouse coding transcripts are species specific, and we observe a 3.6 times excess of human NMD transcripts compared with mouse; in contrast to previous studies, the majority of species-specific AS is unlinked to transposable elements. We observe one conserved CDS variant and one conserved NMD variant per 2.3 and 11.4 genes, respectively. Subsequently, we identify and characterize equivalent AS patterns for 22.9% of these CDS or NMD-linked events in nonmammalian vertebrate genomes, and our data indicate that functional NMD-linked AS is more widespread and ancient than previously thought. Furthermore, although we observe an association between conserved AS and elevated sequence conservation, as previously reported, we emphasize that 30% of conserved AS exons display sequence conservation below the average score for constitutive exons. In conclusion, we demonstrate the value of detailed comparative annotation in generating a comprehensive set of AS transcripts, increasing our understanding of AS evolution in vertebrates. Our data supports a model whereby the acquisition of functional AS has occurred throughout vertebrate evolution and is considered alongside amino acid change as a key mechanism in gene evolution.
Resumo:
Alternative splicing produces multiple isoforms from the same gene, thus increasing the number of transcripts of the species. Alternative splicing is a virtually ubiquitous mechanism in eukaryotes, for example more than 90% of protein-coding genes in human are alternatively spliced. Recent evolutionary studies showed that alternative splicing is a fast evolving and highly species- specific mechanism. The rapid evolution of alternative splicing was considered as a contribution to the phenotypic diversity between species. However, the function of many isoforms produced by alternative splicing remains unclear and they might be the result of noisy splicing. Thus, the functional relevance of alternative splicing and the evolutionary mechanisms of its rapid divergence among species are still poorly understood. During my thesis, I performed a large-scale analysis of the regulatory mechanisms that drive the rapid evolution of alternative splicing. To study the evolution of alternative splicing regulatory mechanisms, I used an extensive RNA-sequencing dataset comprising 12 tetrapod species (human, chimpanzee and bonobo, gorilla, orangutan, macaque, marmoset, mouse, opossum, platypus, chicken and frog) and 8 tissues (cerebellum, brain, heart, kidney, liver, testis, placenta and ovary). To identify the catalogue of alternative splicing eis-acting regulatory elements in the different tetrapod species, I used a previously defined computational approach. This approach is a statistical analysis of exons/introns and splice sites composition and relies on a principle of compensation between splice sites strength and the presence of additional regulators. With an evolutionary comparative analysis of the exonic eis-acting regulators, I showed that these regulatory elements are generally shared among primates and more conserved than non-regulatory elements. In addition, I showed that the usage of these regulatory elements is also more conserved than expected by chance. In addition to the identification of species- specific eis-acting regulators, these results may explain the rapid evolution of alternative splicing. I also developed a new approach based on evolutionary sequence changes and corresponding alternative splicing changes to identify potential splicing eis-acting regulators in primates. The identification of lineage-specific substitutions and corresponding lineage-specific alternative splicing changes, allowed me to annotate the genomic sequences that might have played a role in the alternative splicing pattern differences among primates. Finally, I showed that the identified splicing eis-acting regulator datasets are enriched in human disease-causing mutations, thus confirming their biological relevance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ca(v)2.1 Ca(2+) channels (P/Q-type), which participate in various key roles in the CNS by mediating calcium influx, are extensively spliced. One of its alternatively-spliced exons is 37, which forms part of the EF hand. The expression of exon 37a (EFa form), but not exon 37b (EFb form), confers the channel an activity-dependent enhancement of channel opening known as Ca(2+)-dependent facilitation (CDF). In this study, we analyzed the trend of EF hand splice variant distributions in mouse, rat and human brain tissues. We observed a developmental switch in rodents, as well as an age and gender bias in human brain tissues, suggestive of a possible role of these EF hand splice variants in neurophysiological specialization. A parallel study performed on rodent brains showed that the data drawn from human and rodent tissues may not necessarily correlate in the process of aging.
Resumo:
The inducible nitric oxide synthase (iNOS) contains an amino-terminal oxygenase domain, a carboxy-terminal reductase domain, and an intervening calmodulin-binding region. For the synthesis of nitric oxide (NO), iNOS is active as a homodimer. The human iNOS mRNA is subject to alternative splicing, including deletion of exons 8 and 9 that encode amino acids 242–335 of the oxygenase domain. In this study, iNOS8−9− and full-length iNOS (iNOSFL) were cloned from bronchial epithelial cells. Expression of iNOS8−9− in 293 cell line resulted in generation of iNOS8−9− mRNA and protein but did not lead to NO production. In contrast to iNOSFL, iNOS8−9− did not form dimers. Similar to iNOSFL, iNOS8−9− exhibited NADPH-diaphorase activity and contained tightly bound calmodulin, indicating that the reductase and calmodulin-binding domains were functional. To identify sequences in exons 8 and 9 that are critical for dimerization, iNOSFL was used to construct 12 mutants, each with deletion of eight residues in the region encoded by exons 8 and 9. In addition, two “control” iNOS deletion mutants were synthesized, lacking either residues 45–52 of the oxygenase domain or residues 1131–1138 of the reductase domain. Whereas both control deletion mutants generated NO and formed dimers, none of the 12 other mutants formed dimers or generated NO. The region encoded by exons 8 and 9 is critical for iNOS dimer formation and NO production but not for reductase activity. This region could be a potential target for therapeutic interventions aimed at inhibiting iNOS dimerization and hence NO synthesis.
Resumo:
The class I glutathione S-transferases (GSTs) of Anopheles gambiae are encoded by a complex gene family. We describe the genomic organization of three members of this family, which are sequentially arranged on the chromosome in divergent orientations. One of these genes, aggst1-2, is intronless and has been described. In contrast, the two A. gambiae GST genes (aggst1α and aggst1β) reported within are interrupted by introns. The gene aggst1α contains five coding exons that are alternatively spliced to produce four mature GST transcripts, each of which contains a common 5′ exon encoding the N termini of the GST protein spliced to one of four distinct 3′ exons encoding the carboxyl termini. All four of the alternative transcripts of aggst1α are expressed in A. gambiae larvae, pupae, and adults. We report on the involvement of alternative RNA splicing in generating multiple functional GST transcripts. A cDNA from the aggst1β gene was detected in adult mosquitoes, demonstrating that this GST gene is actively transcribed. The percentage similarity of the six cDNAs transcribed from the three GST genes range from 49.5% to 83.1% at the nucleotide level.
Resumo:
Two classes of human G protein-coupled receptors, cysteinyl leukotriene 1 (CysLT1) and CysLT2 receptors, recently have been characterized and cloned. Because the CysLT1 receptor blockers are effective in treating human bronchial asthma and the mouse is often used to model human diseases, we isolated the mouse CysLT1 receptor from a mouse lung cDNA library and found two isoforms. A short isoform cDNA containing two exons encodes a polypeptide of 339 aa with 87.3% amino acid identity to the human CysLT1 receptor. A long isoform has two additional exons and an in-frame upstream start codon resulting in a 13-aa extension at the N terminus. Northern blot analysis revealed that the mouse CysLT1 receptor mRNA is expressed in lung and skin; and reverse transcription–PCR showed wide expression of the long isoform with the strongest presence in lung and skin. The gene for the mouse CysLT1 receptor was mapped to band XD. Leukotriene (LT) D4 induced intracellular calcium mobilization in Chinese hamster ovary cells stably expressing either isoform of the mouse CysLT1 receptor cDNA. This agonist effect of LTD4 was fully inhibited by the CysLT1 receptor antagonist, MK-571. Microsomal membranes from each transformant showed a single class of binding sites for [3H]LTD4; and the binding was blocked by unlabeled LTs, with the rank order of affinities being LTD4 >> LTE4 = LTC4 >> LTB4. Thus, the dominant mouse isoform with the N-terminal amino acid extension encoded by an additional exon has the same ligand response profile as the spliced form and the human receptor.
Resumo:
Analyses of the human PAX-5 locus and of the 5' region of the mouse Pax-5 gene revealed that transcription from two distinct promoters results in splicing of two alternative 5' exons to the common coding sequences of exons 2-10. Transcription from the upstream promoter initiates downstream of a TATA box and occurs predominantly in B-lymphocytes, whereas the TATA-less downstream promoter is active in all Pax-5-expressing tissues. The human PAX-5 gene is located on chromosome 9 in region p13, which is involved in t(9;14)(pl3;q32) translocations recurring in small lymphocytic lymphomas of the plasmacytoid subtype and in derived large-cell lymphomas. A previous molecular analysis of a t(9;14) breakpoint from a diffuse large-cell lymphoma (KIS-1) demonstrated that the immunoglobulin heavy-chain (IgH) locus on 14q32 was juxtaposed to chromosome 9p13 sequences of unknown function [Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T. & Honjo, T. (1990) Proc. Natl. Acad. Sci. USA 87,628-632]. Here we show that the KIS-1 translocation breakpoint is located 1807 base pairs upstream of exon 1A of PAX-5, thus bringing the potent Emu enhancer of the IgH gene into close proximity of the PAX-5 promoters. These data suggest that deregulation of PAX-5 gene transcription by the t(9;14)(pl3;q32) translocation contributes to the pathogenesis of small lymphocytic lymphomas with plasmacytoid differentiation.
Resumo:
To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR gamma (mPPAR gamma) gene. This gene extends > 105 kb and gives rise to two mRNAs (mPPAR gamma 1 and mPPAR gamma 2) that differ at their 5' ends. The mPPAR gamma 2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR gamma 1 and reveals a different 5' untranslated sequence. We show that mPPAR gamma 1 mRNA is encoded by eight exons, whereas the mPPAR gamma 2 mRNA is encoded by seven exons. Most of the 5' untranslated sequence of mPPAR gamma 1 mRNA is encoded by two exons, whereas the 5' untranslated sequence and the extra 30 N-terminal amino acids of mPPAR gamma 2 are encoded by one exon, which is located between the second and third exons coding for mPPAR gamma 1. The last six exons of mPPAR gamma gene code for identical sequences in mPPAR gamma 1 and mPPAR gamma 2 isoforms. The mPPAR gamma 1 and mPPAR gamma 2 isoforms are transcribed from different promoters. The mPPAR gamma gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase the diversity of ligand and tissue-specific transcriptional responses.
Resumo:
We have identified a second isoform of the catalytic A subunit of the vacuolar H+ pump in chicken osteoclasts. In this isoform (A2) a 72-bp cassette replaces a 90-bp cassette present in the classical A1 isoform. The A1-specific cassette encodes a region of the protein that contains one of the three ATP-binding consensus sequences (the P-loop) identified in this polypeptide, as well as the pharmacologically relevant Cys254. In contrast, the A2-specific cassette does not contain any of these features. These two isoforms, which appear to be ubiquitously expressed, are encoded by a single gene and are generated by alternative splicing of two mutually exclusive exons. The alternative RNA processing involves the recognition of a single site, the boundary between the A2- and A1-specific exons, as either acceptor (in A1) or donor (in A2) splice site.