964 resultados para ALTERNATE ASSEMBLIES
Resumo:
The privacy of efficient tree-based RFID authentication protocols is heavily dependent on the branching factor on the top layer. Indefinitely increasing the branching factor, however, is not a viable option. This paper proposes the alternate-tree walking scheme as well as two protocols to circumvent this problem. The privacy of the resulting protocols is shown to be comparable to that of linear-time protocols, where there is no leakage of information, whilst reducing the computational load of the database by one-third of what is required of tree-based protocols during authentication. We also identify and address a limitation in quantifying privacy in RFID protocols.
Resumo:
In this article, I present my experience with integrating an alternate reality gaming (ARG) framework into a pre-service science teacher education course. My goal is to provide an account of my experiences that can inform other science education practitioners at the tertiary and secondary levels that wish to adopt a similar approach in their classes. A game was designed to engage pre-service teachers with issues surrounding the declining enrolments in science, technology, engineering and mathematics disciplines (i.e., the STEM crisis; Tytler, 2007) and ways of re-engaging learners with STEM subjects. The use of ARG in science education is highly innovative. Literature on the use of ARG for educational purposes is scarce so in the article I have drawn on a range of available literature on gaming and ARG to define what it is and to suggest how it can be included in school science classrooms.
Resumo:
This paper is a response to Hoban and Neilsen's (2010) Five Rs model for understanding how learners engage with slowmation. An alternative model (the Learning MMAEPER Model) that builds on the 5Rs model is explained in terms of its use in secondary science preservice teacher education. To probe into the surface and deep learning that can occur during the creation of a slowmation, the learning and relearning model is explored in terms of learning elements. This model can assist teachers to monitor the learning of their students and direct them to a deeper understanding of science concepts.
Resumo:
Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.
Resumo:
We have explored the potential of deep Raman spectroscopy, specifically surface enhanced spatially offset Raman spectroscopy (SESORS), for non-invasive detection from within animal tissue, by employing SERS-barcoded nanoparticle (NP) assemblies as the diagnostic agent. This concept has been experimentally verified in a clinic-relevant backscattered Raman system with an excitation line of 785 nm under ex vivo conditions. We have shown that our SORS system, with a fixed offset of 2-3 mm, offered sensitive probing of injected QTH-barcoded NP assemblies through animal tissue containing both protein and lipid. In comparison to that of non-aggregated SERS-barcoded gold NPs, we have demonstrated that the tailored SERS-barcoded aggregated NP assemblies have significantly higher detection sensitivity. We report that these NP assemblies can be readily detected at depths of 7-8 mm from within animal proteinaceous tissue with high signal-to-noise (S/N) ratio. In addition they could also be detected from beneath 1-2 mm of animal tissue with high lipid content, which generally poses a challenge due to high absorption of lipids in the near-infrared region. We have also shown that the signal intensity and S/N ratio at a particular depth is a function of the SERS tag concentration used and that our SORS system has a QTH detection limit of 10-6 M. Higher detection depths may possibly be obtained with optimization of the NP assemblies, along with improvements in the instrumentation. Such NP assemblies offer prospects for in vivo, non-invasive detection of tumours along with scope for incorporation of drugs and their targeted and controlled release at tumour sites. These diagnostic agents combined with drug delivery systems could serve as a “theranostic agent”, an integration of diagnostics and therapeutics into a single platform.
Resumo:
An alternative learning approach for destructive testing of structural specimens in civil engineering is explored by using a remote laboratory experimentation method. The remote laboratory approach focuses on overcoming the constraints in the hands-on experimentation without compromising the understanding of the students on the concepts and mechanics of reinforced concrete structures. The goal of this study is to evaluate whether or not the remote laboratory experimentation approach can become a standard in civil engineering teaching. The teaching activity using remote-laboratory experimentation is presented here and the outcomes of this activity are outlined. The experience and feedback gathered from this study are used to improve the remote-laboratory experimentation approach in future years to other aspects of civil engineering where destructive testing is essential.
Resumo:
This thesis is concerned with understanding the roles of four alternate healing systems and medical practice in the community's health behaviour. The four alternate systems are naturopathy, homoeopathy, osteopathy and chiropractic. The research reported developed from work supported by the Committee of Inquiry into Chiropractic, Osteopathy, Homoeopathy and Naturopathy conducted under the chairmanship of Professor E. C. Webb set up by the Australian Government in 1975. The study concentrates on the factors which influence individual clients in their decisions to consult healers for treatment. An underlying assumption is that an analysis of the processes that effect such decisions will lead to further knowledge of the community's attitudes towards the functions of alternate healing and medicine. A review of the historical backgrounds and current status of the four alternate healing systems leads to the conclusion that they differ in a variety of areas. These areas include treatment modalities, historical backgrounds, occupational development and rapprochement with medicine. Homoeopathy, osteopathy and chiropractic emerged as distinct approaches to healing late in the nineteenth century. Naturopathy tends to be a philosophy or style of life as much as a health system in its own right. Their relationships with medicine also vary; osteopathy and naturopathy receive some acceptance, some homoeopaths are tolerated, whilst chiropractic is ostracised and vilified. A common paradigm of treatment underlies all four alternate approaches to healing. They all eschew the use of synthetic pharmaceuticals and invasive treatments and accept an indigenous theory of disease and a belief in the vis medicatrix naturae or the healing power of nature. An inevitable concomitant of this paradigm is that they believe that healing and health must be self-engendered. They rest within the client and his or her actions, not within the hands, skills or power of the healer. It is these characteristics combined with the alternate healers ' claims to espouse a similar scientific rationale for their approaches, and their functioning as parallel healers to medicine, that establishes their special relationship with medicine. This relationship become s more problematic in the face of medicine's hegemony and claim to unique legitimacy as the community's sole healing system. The interaction between these systems and medical practice can be gauged through articles related to the four alternate healing systems that have appeared in the medical literature. Interest has been cyclical but appears to have markedly increased in the past two decades. In this period it has included exploratory and descriptive writing; concern with controlling and/or eradicating the healers; desire to protect an ignorant and vulnerable public and. finally understanding and exploration of what the alternate healers might have to offer. At the same time, the public or institutionalized role has been one of denial and suppression through ostracism and legal constraints. In spite of medicine's position the alternate healing systems have found growing community acceptance so that it is problematical and probably unacceptable now to consider their use as a 'deviant ' health action. Increasing interest in the characteristics of clients has provided a consensus that they are similar to the adult population and are more likely to suffer from musculoskeletal and chronic illnesses. They are no more likely to be neurotic or gullible than the general community, but probably more practical and more oriented towards an active involvement in the healing process. The impact of these issues is explored, through comparing the strategies taken into account when choosing a treatment. These include attending one of the alternate healers exclusively for a condition; attending an alternate healer and a medical practitioner for the same problem; attending a medical practitioner solely or not consulting any healer. Respondents from surveys of alternate healer clients and the general community were classified according to their use of these four strategies, and the influences on their decisions at different stages of the treatment decision making process were compared.
Resumo:
Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.
Resumo:
The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.
Resumo:
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.
Resumo:
This is a methodological paper describing when and how manifest items dropped from a latent construct measurement model (e.g., factor analysis) can be retained for additional analysis. Presented are protocols for assessment for retention in the measurement model, evaluation of dropped items as potential items separate from the latent construct, and post hoc analyses that can be conducted using all retained (manifest or latent) variables. The protocols are then applied to data relating to the impact of the NAPLAN test. The variables examined are teachers’ achievement goal orientations and teachers’ perceptions of the impact of the test on curriculum and pedagogy. It is suggested that five attributes be considered before retaining dropped manifest items for additional analyses. (1) Items can be retained when employed in service of an established or hypothesized theoretical model. (2) Items should only be retained if sufficient variance is present in the data set. (3) Items can be retained when they provide a rational segregation of the data set into subsamples (e.g., a consensus measure). (4) The value of retaining items can be assessed using latent class analysis or latent mean analysis. (5) Items should be retained only when post hoc analyses with these items produced significant and substantive results. These suggested exploratory strategies are presented so that other researchers using survey instruments might explore their data in similar and more innovative ways. Finally, suggestions for future use are provided.
Resumo:
Background Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. Results In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. Conclusions To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the ‘best’ output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.
Resumo:
There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.
Resumo:
The formation of the helical morphology in monolayers and bilayers of chiral amphiphilic assemblies is believed to be driven at least partly by the interactions at the chiral centers of the amphiphiles. However, a detailed microscopic understanding of these interactions and their relation with the helix formation is still not clear. In this article a study of the molecular origin of the chirality-driven helix formation is presented by calculating, for the first time, the effective pair potential between a pair of chiral molecules. This effective potential depends on the relative sizes of the groups attached to the two chiral centers, on the orientation of the amphiphile molecules, and also on the distance between them. We find that for the mirror-image isomers (in the racemic modification) the minimum energy conformation is a nearly parallel alignment of the molecules. On the other hand, the same for a pair of molecules of one kind of enantiomer favors a tilt angle between them, thus leading to the formation of a helical morphology of the aggregate. The tilt angle is determined by the size of the groups attached to the chiral centers of the pair of molecules considered and in many cases predicted it to be close to 45 degrees. The present study, therefore, provides a molecular origin of the intrinsic bending force, suggested by Helfrich (J. Chem. Phys. 1986, 85, 1085-1087), to be responsible for the formation of helical structure. This effective potential may explain many of the existing experimental results, such as the size and the concentration dependence of the formation of helical morphology. It is further found that the elastic forces can significantly modify the pitch predicted by the chiral interactions alone and that the modified real pitch is close to the experimentally observed value. The present study is expected to provide a starting point for future microscopic studies.
Resumo:
A large part of the rural people of developing countries use traditional biomass stoves to meet their cooking and heating energy demands. These stoves possess very low thermal efficiency; besides, most of them cannot handle agricultural wastes. Thus, there is a need to develop an alternate cooking contrivance which is simple, efficient and can handle a range of biomass including agricultural wastes. In this reported work, a highly densified solid fuel block using a range of low cost agro residues has been developed to meet the cooking and heating needs. A strategy was adopted to determine the best suitable raw materials, which was optimized in terms of cost and performance. Several experiments were conducted using solid fuel block which was manufactured using various raw materials in different proportions; it was found that fuel block composed of 40% biomass, 40% charcoal powder, 15% binder and 5% oxidizer fulfilled the requirement. Based on this finding, fuel blocks of two different configurations viz. cylindrical shape with single and multi-holes (3, 6, 9 and 13) were constructed and its performance was evaluated. For instance, the 13 hole solid fuel block met the requirement of domestic cooking; the mean thermal power was 1.6 kWth with a burn time of 1.5 h. Furthermore, the maximum thermal efficiency recorded for this particular design was 58%. Whereas, the power level of single hole solid fuel block was found to be lower but adequate for barbecue cooking application.