318 resultados para ALARM
Resumo:
We consider the problem of regulating the rate of harvesting a natural resource, taking account of the wider system represented by a set of ecological and economic indicators, given differing stakeholder priorities. This requires objective and transparent decision making to show how indicators impinge on the resulting regulation decision. We offer a new scheme for combining indicators, derived from assessing the suitability of lowering versus not lowering the harvest rate based on indicator values relative to their predefined reference levels. Using the practical example of fisheries management under an “ecosystem approach,” we demonstrate how different stakeholder views can be quantitatively represented by weighting sets applied to these comparisons. Using the scheme in an analysis of historical data from the Celtic Sea fisheries, we find great scope for negotiating agreement among disparate stakeholders.
Resumo:
Sensing the chemical warnings present in the environment is essential for species survival. In mammals, this form of danger communication occurs via the release of natural predator scents that can involuntarily warn the prey or by the production of alarm pheromones by the stressed prey alerting its conspecifics. Although we previously identified the olfactory Grueneberg ganglion as the sensory organ through which mammalian alarm pheromones signal a threatening situation, the chemical nature of these cues remains elusive. We here identify, through chemical analysis in combination with a series of physiological and behavioral tests, the chemical structure of a mouse alarm pheromone. To successfully recognize the volatile cues that signal danger, we based our selection on their activation of the mouse olfactory Grueneberg ganglion and the concomitant display of innate fear reactions. Interestingly, we found that the chemical structure of the identified mouse alarm pheromone has similar features as the sulfur-containing volatiles that are released by predating carnivores. Our findings thus not only reveal a chemical Leitmotiv that underlies signaling of fear, but also point to a double role for the olfactory Grueneberg ganglion in intraspecies as well as interspecies communication of danger.
Resumo:
Letter to S.D. Woodruff from the Holmes’ Burglar Alarm, Telegraph Company of New York stating that they will send a Mr. Whittaker over to make repairs or changes. There is a partial envelope included with this letter, Feb. 8, 1881.
Resumo:
The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals
Resumo:
The EU-funded research project ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative human impacts. Research focuses on the assessment and forecast of changes in biodiversity and in the structure, function, and dynamics of ecosystems. This includes the relationships between society, the economy and biodiversity.
Resumo:
A multi-layered architecture of self-organizing neural networks is being developed as part of an intelligent alarm processor to analyse a stream of power grid fault messages and provide a suggested diagnosis of the fault location. Feedback concerning the accuracy of the diagnosis is provided by an object-oriented grid simulator which acts as an external supervisor to the learning system. The utilization of artificial neural networks within this environment should result in a powerful generic alarm processor which will not require extensive training by a human expert to produce accurate results.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.
Resumo:
The experience of pain occurs when the level of a stimulus is sufficient to elicit a marked affective response, putatively to warn the organism of potential danger and motivate appropriate behavioral responses. Understanding the biological mechanisms of the transition from innocuous to painful levels of sensation is essential to understanding pain perception as well as clinical conditions characterized by abnormal relationships between stimulation and pain response. Thus, the primary objective of this study was to characterize the neural response associated with this transition and the correspondence between that response and subjective reports of pain. Towards this goal, this study examined BOLD response profiles across a range of temperatures spanning the pain threshold. 14 healthy adults underwent functional magnetic resonance imaging (fMRI) while a range of thermal stimuli (44-49oC) were applied. BOLD responses showed a sigmoidal profile along the range of temperatures in a network of brain regions including insula and mid- cingulate, as well as a number of regions associated with motor responses including ventral lateral nuclei of the thalamus, globus pallidus and premotor cortex. A sigmoid function fit to the BOLD responses in these regions explained up to 85% of the variance in individual pain ratings, and yielded an estimate of the temperature of steepest transition from non-painful to painful heat that was nearly identical to that generated by subjective ratings. These results demonstrate a precise characterization of the relationship between objective levels of stimulation, resulting neural activation, and subjective experience of pain and provide direct evidence for a neural mechanism supporting the nonlinear transition from innocuous to painful levels along the sensory continuum.
Resumo:
The cornicle secretion of Myzus persicae reared on artificial diet only elicits an alarm response in plant-reared conspecifics after the young aphids have been transferred to plants for 7days. Acetate in the form of 0.32% sodium acetate has been added to the diet as an early step in synthesis of the alarm pheromone, (E)-β-farnesene (EBF). The cornicle secretion of diet-reared aphids then elicits an alarm response. However, there is no difference in internal EBF concentration between plant- and diet-reared aphids. Puncturing aphids, either plant- or diet-reared, with a pin shows that both can elicit an alarm response, whereas it is reduced by half with diet-reared individuals. Although there is no significant difference in the concentration of EBF produced, the total amount in diet-reared aphids is increased by acetate in the diet to a level similar to that in plant-reared individuals: the size of aphids reared on an acetate-supplemented diet is increased and comparable with the size of those that are plant-reared. Bioassays with a range of EBF concentrations show a high threshold for the alarm response. It is concluded that the different size of aphids reared on plants and standard diet results in them secreting, respectively, above and below the response threshold.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of pheromones and their chemical analogues in honeybee alarm behaviors was studied in observation boxes. Defensive behaviors, as follows: a) attraction to scent source, b) elevation of wings in 'V', c) abdomen elevation, d) abdomen elevation and pumping and e) first leg pair elevation had been temporarily registered when the following compounds were presented: isoamyl alcohol, octyl alcohol, benzyl alcohol, n-butyl acetate, n-octyl acetate, isopentyl acetate, benzyl acetate and 2-heptanone. The results were as follows: 1. the bees elicited some characteristic behaviors when chemical alarm messages were presented, 2. agression (stinging) was not completed with any compound tested, probably because there was not a target (visual stimulus), 3. in all situations the attraction to scent source was low, 4. all the behaviors were elicited in a temporarily different way, 5. the compounds that elicited stronger responses and a greater number of the investigated behaviors were: isopentyl acetate, 2-heptanone, octyl acetate and n-octyl alcohol. In all situations, the first behavior response (and the most intense one) was the elevation and pumping the abdomen. This suggests that the chemical message was promptly recognized and then transmitted to each worker. So, the results obtained in the present work, suggest that chemical alarm messages may be recognized by different mechanisms of neural integration.