951 resultados para ADP-ribosylation Factor-1
Resumo:
Movement of material between intracellular compartments takes place through the production of transport vesicles derived from donor membranes. Vesicle budding that results from the interaction of cytoplasmic coat proteins (coatomer and clathrin) with intracellular organelles requires a type of GTP-binding protein termed ADP-ribosylation factor (ARF). The GTPase cycle of ARF proteins that allows the uncoating and fusion of a transport vesicle with a target membrane is mediated by ARF-dependent GTPase-activating proteins (GAPs). A previously identified yeast protein, Gcs1, exhibits structural similarity to a mammalian protein with ARF-GAP activity in vitro. We show herein that the Gcs1 protein also has ARF-GAP activity in vitro using two yeast Arf proteins as substrates. Furthermore, Gcs1 function is needed for the efficient secretion of invertase, as expected for a component of vesicle transport. The in vivo role of Gcs1 as an ARF GAP is substantiated by genetic interactions between mutations in the ARF1/ARF2 redundant pair of yeast ARF genes and a gcs1-null mutation; cells lacking both Gcs1 and Arf1 proteins are markedly impaired for growth compared with cells missing either protein. Moreover, cells with decreased levels of Arf1 or Arf2 protein, and thus with decreased levels of GTP-Arf, are markedly inhibited for growth by increased GCS1 gene dosage, presumably because increased levels of Gcs1 GAP activity further decrease GTP-Arf levels. Thus by both in vitro and in vivo criteria, Gcs1 is a yeast ARF GAP.
Resumo:
The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.
Resumo:
ADP ribosylation factor (ARF) is a small guanosine triphosphate (GTP)-binding protein that regulates the binding of coat proteins to membranes and is required for several stages of vesicular transport. ARF also stimulates phospholipase D (PLD) activity, which can alter the lipid content of membranes by conversion of phospholipids into phosphatidic acid. Abundant PLD activity was found in Golgi-enriched membranes from several cell lines. Golgi PLD activity was greatly stimulated by ARF and GTP analogs and this stimulation could be inhibited by brefeldin A (BFA), a drug that blocks binding of ARF to Golgi membranes. Furthermore, in Golgi membranes from BFA-resistant PtK1 cells, basal PLD activity was high and not stimulated by exogenous ARF or GTP analogs. Thus, ARF activates PLD on the Golgi complex, suggesting a possible link between transport events and the underlying architecture of the lipid bilayer.
Resumo:
ADP-ribosylation factor (ARF) proteins in Saccharomyces cerevisiae are encoded by two genes, ARF1 and ARF2. The addition of the c-myc epitope at the C terminus of Arf1 resulted in a mutant (arf1-myc arf2) that supported vegetative growth and rescued cells from supersensitivity to fluoride, but homozygous diploids failed to sporulate. arf1-myc arf2 mutants completed both meiotic divisions but were unable to form spores. The SPO14 gene encodes a phospholipase D (PLD), whose activity is essential for mediating the formation of the prospore membrane, a prerequisite event for spore formation. Spo14 localized normally to the developing prospore membrane in arf1-myc arf2 mutants; however, the synthesis of the membrane was attenuated. This was not a consequence of reduced PLD catalytic activity, because the enzymatic activity of Spo14 was unaffected in meiotic arf1-myc arf2 mutants. Although potent activators of mammalian PLD1, Arf1 proteins did not influence the catalytic activities of either Spo14 or ScPld2, a second yeast PLD. These results demonstrate that ARF1 is required for sporulation, and the mitotic and meiotic functions of Arf proteins are not mediated by the activation of any known yeast PLD activities. The implications of these results are discussed with respect to current models of Arf signaling.
Resumo:
Examining how key components of coat protein I (COPI) transport participate in cargo sorting, we find that, instead of ADP ribosylation factor 1 (ARF1), its GTPase-activating protein (GAP) plays a direct role in promoting the binding of cargo proteins by coatomer (the core COPI complex). Activated ARF1 binds selectively to SNARE cargo proteins, with this binding likely to represent at least a mechanism by which activated ARF1 is stabilized on Golgi membrane to propagate its effector functions. We also find that the GAP catalytic activity plays a critical role in the formation of COPI vesicles from Golgi membrane, in contrast to the prevailing view that this activity antagonizes vesicle formation. Together, these findings indicate that GAP plays a central role in coupling cargo sorting and vesicle formation, with implications for simplifying models to describe how these two processes are coupled during COPI transport.
Resumo:
The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPgammaS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.
Resumo:
Vesicle and tubule transport containers move proteins and lipids from one membrane system to another. Newly forming transport containers frequently have electron-dense coats. Coats coordinate the accumulation of cargo and sculpt the membrane. Recent advances have shown that components of both COP1 and clathrin-adaptor coats share the same structure and the same motif-based cargo recognition and accessory factor recruitment mechanisms, which leads to insights on conserved aspects of coat recruitment, polymerisation and membrane deformation. These themes point to the way in which evolutionarily conserved features underpin these diverse pathways.
Resumo:
Dans un contexte où la forte prévalence du cancer du sein chez les femmes demeure depuis plusieurs années un enjeu de société majeur, les nouvelles stratégies visant à réduire la mortalité associée à cette maladie sont le sujet de nombreuses recherches scientifiques. Les facteurs d’ADP-ribosylation sont des petites protéines G monomériques importantes pour la réorganisation du cytosquelette d’actine, le remodelage des lipides membranaires et la formation de vésicules. Notre laboratoire a précédemment montré qu’ARF1 est surexprimée dans les cellules hautement invasives du cancer du sein et contribue à leur phénotype migratoire accru. Dans le cadre de ce mémoire, nous avons défini le rôle de cette GTPase dans la migration de telles lignées cellulaires. Pour ce faire, nous avons étudié le rôle d’ARF1 dans l’activation de Rac1, un membre de la famille des GTPases Rho connu pour son implication dans la formation de lamellipodes ainsi que dans la migration cellulaire. Globalement, nous avons déterminé que l’activation d’ARF1 permet l’activation subséquente de Rac1 ainsi que de la voie de signalisation nécessaire au processus de migration. Par une approche d’interférence à l’ARN dans les cellules MDA-MB-231, nous avons d’abord montré la contribution essentielle de Rac1 la migration dépendante d’ARF1. Puis, de façon à établir le mécanisme derrière cette régulation, nous avons montré que l’inhibition de l’expression endogène d’ARF1 altère l’activation de Rac1 dépendante de l’EGF. Nous avons ensuite examiné les conséquences d’une telle inhibition sur les partenaires d’interaction de Rac1. Nous avons découvert qu’ARF1 et Rac1 forment un complexe constitutif, puis qu’ARF1est nécessaire à l’association de Rac1 à IRSp53, une protéine importante dans la formation de lamellipodes. La translocation dépendante de l’EGF du complexe Rac1/IRSp53 à la membrane plasmique est également sous le contrôle d’ARF1. En conclusion, cette étude fournit un nouveau mécanisme par lequel ARF1 régule la migration cellulaire et identifie cette GTPase en tant que cible pharmacologique prometteuse pour freiner le développement des métastases chez les patients atteints du cancer du sein.
Resumo:
The catalytic, or third domain of Pseudomonas exotoxin A (PEIII) catalyzes the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, inhibiting protein synthesis. We have determined the structure of PEIII crystallized in the presence of NAD to define the site of binding and mechanism of activation. However, NAD undergoes a slow hydrolysis and the crystal structure revealed only the hydrolysis products, AMP and nicotinamide, bound to the enzyme. To better define the site of NAD binding, we have now crystallized PEIII in the presence of a less hydrolyzable NAD analog, beta-methylene-thiazole-4-carboxamide adenine dinucleotide (beta-TAD), and refined the complex structure at 2.3 angstroms resolution. There are two independent molecules of PEIII in the crystal, and the conformations of beta-TAD show some differences in the two binding sites. The beta-TAD attached to molecule 2 appears to have been hydrolyzed between the pyrophosphate and the nicotinamide ribose. However molecule 1 binds to an intact beta-TAD and has no crystal packing contacts in the vicinity of the binding site, so that the observed conformation and interaction with the PEIII most likely resembles that of NAD bound to PEIII in solution. We have compared this complex with the catalytic domains of diphtheria toxin, heat labile enterotoxin, and pertussis toxin, all three of which it closely resembles.
Resumo:
Incubation of glyceraldehyde-3-phosphate dehydrogenase (GAPD) with sodium nitroprusside (SNP) decreased its activity in concentration- and time-dependent fashion in the presence of a thiol compounds, with DTT being more effective than GSH. Both forward and backward reactions were effected. Coinciding with this, HgCl2-sensitive labelling of the protein by [32P]NAD+ also increased, indicating the stimulation of ADP-ribosylation. Treatment with SNP of GAPD samples from rabbit muscle, sheep brain and yeast inactivated the dehydrogenase activity of the three, but only the mammalian proteins showed ADP-ribosylation activity. The SNP-modified protein of rabbit muscle GAPD, freed from the reagent by Sephadex filtration showed a concentration-dependent restoration of the dehydrogenase activity on preincubation with DTT and GSH. Such thiol-treated preparations also gave increased ADP-ribosylation activity with DTT, and to a lesser extent with GSH. The SNP-modified protein was unable to catalyze this activity with the native yeast enzyme and native and heat-inactivated muscle enzyme. It was possible to generate the ADP-ribosylation activity in muscle GAPD, by an NO-independent mechanism, on dialysis in Tris buffer under aerobic conditions , and on incubating with NADPH, but not NADH, in muscle and brain, but not yeast, enzymes. The results suggest that the inverse relationship of the dehydrogenase and ADP-ribosylation activities is coincidental but not correlated
Resumo:
Cytokines regulate lymphocyte development and differentiation, but precisely how they control these processes is still poorly understood. By using microarray technology to detect cytokine-induced genes, we identified a cDNA encoding Cybr, which was increased markedly in cells incubated with IL-2 and IL-12. The mRNA was most abundant in hematopoietic cells and tissues. The predicted amino acid sequence is similar to that of GRP-1-associated protein (GRASP), a recently identified retinoic acid-induced cytohesin-binding protein. Physical interaction, dependent on the coiled-coil domains of Cybr and cytohesin-1, was demonstrated by coimmunoprecipitation of the overexpressed proteins from 293T cells. Cytohesin-1, in addition to its role in cell adhesion, is a guanine nucleotide-exchange protein activator of ARF GTPases. Acceleration of guanosine 5'-O-(thiotriphosphate) binding to ARF by cytohesin-1 in vitro was enhanced by Cybr. Because the binding protein modified activation of ADP ribosylation factor by cytohesin-1, we designate this cytokine-inducible protein Cybr (cytohesin binder and regulator).
Resumo:
The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPγS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1·GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF·GTP hydrolysis.
Resumo:
ADP-ribosylation factor (ARF) GTPases and their regulatory proteins have been implicated in the control of diverse biological functions. Two main classes of positive regulatory elements for ARF have been discovered so far: the large Sec7/Gea and the small cytohesin/ARNO families, respectively. These proteins harbor guanine–nucleotide-exchange factor (GEF) activity exerted by the common Sec7 domain. The availability of a specific inhibitor, the fungal metabolite brefeldin A, has enabled documentation of the involvement of the large GEFs in vesicle transport. However, because of the lack of such tools, the biological roles of the small GEFs have remained controversial. Here, we have selected a series of RNA aptamers that specifically recognize the Sec7 domain of cytohesin 1. Some aptamers inhibit guanine–nucleotide exchange on ARF1, thereby preventing ARF activation in vitro. Among them, aptamer M69 exhibited unexpected specificity for the small GEFs, because it does not interact with or inhibit the GEF activity of the related Gea2-Sec7 domain, a member of the class of large GEFs. The inhibitory effect demonstrated in vitro clearly is observed as well in vivo, based on the finding that M69 produces similar results as a dominant-negative, GEF-deficient mutant of cytohesin 1: when expressed in the cytoplasm of T-cells, M69 reduces stimulated adhesion to intercellular adhesion molecule-1 and results in a dramatic reorganization of F-actin distribution. These highly specific cellular effects suggest that the ARF-GEF activity of cytohesin 1 plays an important role in cytoskeletal remodeling events of lymphoid cells.
Resumo:
The inhibition of alpha i2-/- mouse cardiac isoproterenol-stimulated adenylyl cyclase (AC; EC 4.6.1.1) activity by carbachol and that of alpha i2-/- adipocyte AC by phenylisopropyladenosine (PIA), prostaglandin E2, and nicotinic acid were partially, but not completely, inhibited. While the inhibition of cardiac AC was affected in all alpha i2-/- animals tested, only 50% of the alpha i2-/- animals showed an impaired inhibition of adipocyte AC, indicative of a partial penetrance of this phenotype. In agreement with previous results, the data show that Gi2 mediates hormonal inhibition of AC and that Gi3 and/or Gi1 is capable of doing the same but with a lower efficacy. Disruption of the alpha i2 gene affected about equally the actions of all the receptors studied, indicating that none of them exhibits a striking specificity for one type of Gi over another and that receptors are likely to he selective rather than specific in their interaction with functionally homologous G proteins (e.g., Gi1, Gi2, Gi3). Western analysis of G protein subunit levels in simian virus 40-transformed primary embryonic fibroblasts from alpha i2+/+ and alpha i2-/- animals showed that alpha i2 accounts for about 50% of the immunopositive G protein alpha subunits and that loss of the alpha i2 is accompanied by a parallel reduction in G beta 35 and G beta 36 subunits and by a 30-50% increase in alpha i3. This suggests that G beta-gamma levels may be regulated passively through differential rates of turnover in their free vs. trimeric states. The existence of compensatory increase(s) in alpha i subunit expression raises the possibility that the lack of effect of a missing alpha i2 on AC inhibition in adipocytes of some alpha i2-/- animals may be the reflection of a more pronounced compensatory expression of alpha i3 and/or alpha i1.