985 resultados para ADENOSINE A(2A) RECEPTOR
Resumo:
We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.
Resumo:
Adenosine acts in the nucleus tractus solitarii (NTS), one of the main brain sites related to cardiovascular control. In the present study we show that A(1) adenosine receptor (A(1R)) activation promotes an increase on alpha(2)-adrenoceptor (Alpha(2R)) binding in brainstem cell culture from newborn rats. We investigated the intracellular cascade involved in such modulatory process using different intracellular signaling molecule inhibitors as well as calcium chelators. Phospholipase C, protein kinase Ca(2+)-dependent, IP(3) receptor and intracellular calcium were shown to participate in A(1R)/Alpha(2R) interaction. In conclusion, this result might be important to understand the role of adenosine within the NTS regarding autonomic cardiovascular control. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neurotrophins regulate neuronal cell survival and synaptic plasticity through activation of Trk receptor tyrosine kinases. Binding of neurotrophins to Trk receptors results in receptor autophosphorylation and downstream phosphorylation cascades. Here, we describe an approach to use small molecule agonists to transactivate Trk neurotrophin receptors. Activation of TrkA receptors in PC12 cells and TrkB in hippocampal neurons was observed after treatment with adenosine, a neuromodulator that acts through G protein-coupled receptors. These effects were reproduced by using the adenosine agonist CGS 21680 and were counteracted with the antagonist ZM 241385, indicating that this transactivation event by adenosine involves adenosine 2A receptors. The increase in Trk activity could be inhibited by the use of the Src family-specific inhibitor, PP1, or K252a, an inhibitor of Trk receptors. In contrast to other G protein-coupled receptor transactivation events, adenosine used Trk receptor signaling with a longer time course. Moreover, adenosine activated phosphatidylinositol 3-kinase/Akt through a Trk-dependent mechanism that resulted in increased cell survival after nerve growth factor or brain-derived neurotrophic factor withdrawal. Therefore, adenosine acting through the A2A receptors exerts a trophic effect through the engagement of Trk receptors. These results provide an explanation for neuroprotective actions of adenosine through a unique signaling mechanism and raise the possibility that small molecules may be used to elicit neurotrophic effects for the treatment of neurodegenerative diseases.
Resumo:
Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were rested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 mu g/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggestinga primary involvement of the 5-HT1A receptor in the observed defecit. Based on physiological and pharmacological data,we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.
Resumo:
Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
1. Schizophrenia is a chronic, disabling brain disease that affects approxmately 1% of the world's population. It is characterized by delusions, hallucinations and formal thought disorder, together with a decline in socio-occupational functioning. While the causes for schizophrenia remain unknown, evidence from family, twin and adoption studies clearly demonstrates that it aggregates in families, with this clustering largely attributable to genetic rather than cultural or environmental factors. Identifying the genes involved, however, has proven to be a difficult task because schizophrenia is a complex trait characterized by an imprecise phenotype, the existence of phenocopies and the presence of low disease penetrance, 2. The current working hypothesis for schizophrenia causation is that multiple genes of small to moderate effect confer compounding risk through interactions with each other and with non-genetic risk factors, The same genes may be commonly involved in conferring risk across populations or they may vary in number and strength between different populations. To search for evidence of such genetic loci, both candidate gene and genome-wide linkage studies have been used in clinical cohorts collected from a variety of populations. Collectively, these works provide some evidence for the involvement of a number of specific genes (e.g. the 5-hydroxytryptamine (5-HT) type 2a receptor (5-HT2a) gene and the dopamine D-3 receptor gene) and as yet unidentified factors localized to specific chromosomal regions, including 6p, 6q, 8p, 13q and 22q, These data provide suggestive, but no conclusive, evidence for causative genes. 3. To enable further progress there is a need to: (i) collect fine-grained clinical datasets while searching the schizophrenia phenotype for subgroups or dimensions that may provide a more direct route to causative genes; and (ii) integrate recent refinements in molecular genetic technology, including modern composite marker maps, DNA expression assays and relevant animal models, while using the latest analytical techniques to extract maximum information in order to help distinguish a true result from a false-positive finding.
Resumo:
A acetilcolina (ACh) é o neurotransmissor mais importante no controlo da motilidade gastrointestinal. A libertação de ACh dos neurónios entéricos é regulada por receptores neuronais específicos (De Man et al., 2003). Estudos prévios demonstraram que a adenosina exerce um papel duplo na libertação de ACh dos neurónios entéricos através da activação dos receptores inibitórios A1 e facilitatórios A2A (Duarte-Araújo et al., 2004). O potencial terapêutico dos compostos relacionados com a adenosina no controlo da motilidade e da inflamação intestinal, levou-nos a investigar o papel dos receptores com baixa afinidade para a adenosina, A2B e A3, na libertação de acetilcolina induzida por estimulação eléctrica nos neurónios mioentéricos. Estudos de imunolocalização mostraram que os receptores A2B exibem um padrão de distribuição semelhante ao do marcador de células gliais (GFAP). No que respeita aos receptores A1 e A3, estes encontram-se distribuídos principalmente nos corpos celulares dos neurónios ganglionares mioentéricos, enquanto os receptores A2A estão localizados predominantemente nos terminais nervosos colinérgicos. Neste trabalho mostrou-se que a modulação da libertação de ACh-[3H] (usando os antagonistas selectivos DPCPX, ZM241385 e MRS1191) é balanceada através da activação tónica dos receptores inibitórios (A1) e facilitatórios (A2A e A3) pela adenosina endógena. O antagonista selectivo dos receptores A2B, PSB603, não foi capaz de modificar o efeito inibitório da NECA (análogo da adenosina com afinidade para receptores A2). O efeito facilitatório do agonista dos receptores A3, 2-Cl-IB MECA (1-10 nM), foi atenuado pelo MRS1191 e pelo ZM241385, os quais bloqueiam respectivamente os receptores A3 e A2A. Contrariamente à 2-Cl-IB MECA, a activação dos receptores A2A pelo CGS21680C, atenuou a facilitação da libertação de ACh induzida pela activação dos receptores nicotínicos numa situação em que a geração do potencial de acção neuronal foi bloqueada pela tetrodotoxina. A localização diferencial dos receptores excitatórios A3 e A2A ao longo dos neurónios mioentéricos explica porque razão a estimulação dos receptores A3 (com 2-Cl-IB MECA) localizados nos corpos celulares dos neurónios mioentéricos exerce um efeito sinérgico com os receptores facilitatórios A2A dos terminais nervosos no sentido de aumentarem a libertação de ACh. Os resultados apresentados consolidam e expandem a compreensão actual da distribuição e função dos receptores da adenosina no plexo mioentérico do íleo de rato, e devem ser tidos em consideração para a interpretação de dados relativos às implicações fisiopatológicas da adenosina nos transtornos da motilidade intestinal.
Resumo:
The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.
Resumo:
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol a -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA A receptor labelling in the hippo- campal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extra- cellular levels were studied in control and lesioned rats. In vivo effects of 100 m M KCl perfusion and adenosine A 1 receptor blockade with 1,3-dipropyl- 8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA A receptors and decreased glutamate neurotransmis- sion. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.
Resumo:
OBJECTIVES: Aspirin therapy is usually continued throughout the perioperative period to reduce the risk for thromboembolic stroke and myocardial infarction after carotid endarterectomy (CEA). Aspirin irreversibly binds cyclooxygenase-1, thereby reducing platelet aggregation for the lifetime of each platelet. However, recent research from this unit has shown that aggregation in response to arachidonic acid increases significantly, but transiently, during CEA, which suggests that the anti-platelet effect of aspirin is temporarily reversed. The purpose of the current study was to determine when this phenomenon occurs and to identify the possible mechanisms involved. METHODS: Platelet aggregation was measured in platelet-rich plasma from 41 patients undergoing CEA who were stabilized with 150 mg of aspirin daily. Blood was taken at 8 time points: before anesthesia, after anesthesia, before heparinization, 3 minutes after heparinization, 3 minutes after shunt insertion, 10 minutes after flow restoration, 4 hours postoperatively, and 24 hours postoperatively. Platelet aggregation was also measured at similar times in a group of 18 patients undergoing peripheral angioplasty without general anesthesia. RESULTS: All patient platelets were effectively inhibited by aspirin at the start of the operation. There was a significant intraoperative increase in platelet response to arachidonic acid in both groups of patients, which occurred within 3 minutes of administration of unfractionated heparin. In the CEA group this resulted in a greater than 10-fold increase in mean aggregation, to 5 mmol/L of arachidonic acid (5 mmol/L), rising from 3.9% +/- 2.2% preoperatively to 45.1% +/- 29.3% after administration of heparin ( P <.0001). This increased aggregation persisted into the early postoperative period, but by 24 hours post operation aggregation had returned to near preoperative values. Aggregation in response to other platelet agonists (adenosine diphosphate, thrombin receptor agonist peptide) showed only a small increase at the same time, which could be accounted for by a parallel increase in the level of spontaneous aggregation. CONCLUSION: Administration of heparin significantly increases platelet aggregation in response to arachidonic acid, despite adequate inhibition by aspirin administered preoperatively. This apparent reversal in anti-platelet activity persisted into the immediate early postoperative period, and could explain why a small proportion of patients are at increased risk for acute cardiovascular events after major vascular surgery, despite aspirin therapy.
Resumo:
In the present work we analyzed the effect of the chronic administration of risperidone (2mg/kg over 65 days) on behavioural, morphological and molecular aspects in an experimental model of schizophrenia obtained by bilateral injection of ibotenic acid into the ventral hippocampus of new-born rats. Our results show that during their adult lives the animals with hippocampal lesions exhibit different alterations, mainly at behavioural level and in the gene expression of dopamine D2 and 5-HT2A receptors. However, at morphological level the study performed on the prefrontal cortex did not reveal any alterations in either the thickness or the number of cells immunoreactive for c-Fos, GFAP, CBP or PV. Overall, risperidone administration elicited a trend towards the recovery of the values previously altered by the hippocampal lesion, approaching the values seen in the animals without lesions. It may be concluded that the administration of risperidone in the schizophrenia model employed helps to improve the altered functions, with no significant negative effects. © 2013.
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including antiretroviral, antibacterial, antimalarial, and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated, and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (adenosine diphosphate, thrombin receptor activator peptide-14, and arachidonic acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR-derived structure of betulinic acid and prostacyclin agonists (PGI2), and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that deserves further investigation.