989 resultados para ACIDIFICATION
Resumo:
Hypocitraturia (HCit) is one of the most remarkable features of renal tubular acidosis, but an acidification defect is not seen in the majority of hypocitraturic patients, whose disease is denoted idiopathic hypocitraturia. In order to assess the integrity of urinary acidification mechanisms in hypocitraturic idiopathic calcium stone formers, we studied two groups of patients, hypocitraturic (HCit, N = 21, 39.5 ± 11.5 years, 11 females and 10 males) and normocitraturic (NCit, N = 23, 40.2 ± 11.7 years, 16 females and 7 males) subjects, during a short ammonium chloride loading test lasting 8 h. During the baseline period HCit patients showed significantly higher levels of titratable acid (TA). After the administration of ammonium chloride, mean urinary pH (3rd to 8th hour) and TA and ammonium excretion did not differ significantly between groups. Conversely, during the first hour mean urinary pH was lower and TA and ammonium excretion was higher in HCit. The enhanced TA excretion by HCit during the baseline period and during the first hour suggests that the phosphate buffer mechanism is activated. The earlier response in ammonium excretion by HCit further supports other evidence that acidification mechanisms react promptly. The present results suggest that in the course of lithiasic disease, hypocitraturia coexists with subtle changes in the excretion of hydrogen ions in basal situations.
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.
Effect of D-alpha-tocopherol on tubular nephron acidification by rats with induced diabetes mellitus
Resumo:
The objective of the present study was to determine if treatment of diabetic rats with D-alpha-tocopherol could prevent the changes in glomerular and tubular function commonly observed in this disease. Sixty male Wistar rats divided into four groups were studied: control (C), control treated with D-alpha-tocopherol (C + T), diabetic (D), and diabetic treated with D-alpha-tocopherol (D + T). Treatment with D-alpha-tocopherol (40 mg/kg every other day, ip) was started three days after diabetes induction with streptozotocin (60 mg/kg, ip). Renal function studies and microperfusion measurements were performed 30 days after diabetes induction and the kidneys were removed for morphometric analyses. Data are reported as means ± SEM. Glomerular filtration rate increased in D rats but decreased in D + T rats (C: 6.43 ± 0.21; D: 7.74 ± 0.45; D + T: 3.86 ± 0.18 ml min-1 kg-1). Alterations of tubular acidification observed in bicarbonate absorption flux (JHCO3) and in acidification half-time (t/2) in group D were reversed in group D + T (JHCO3, C: 2.30 ± 0.10; D: 3.28 ± 0.22; D + T: 1.87 ± 0.08 nmol cm-2 s-1; t/2, C: 4.75 ± 0.20; D: 3.52 ± 0.15; D + T: 5.92 ± 0.19 s). Glomerular area was significantly increased in D, while D + T rats exhibited values similar to C, suggesting that the vitamin prevented the hypertrophic effect of hyperglycemia (C: 8334.21 ± 112.05; D: 10,217.55 ± 100.66; D + T: 8478.21 ± 119.81µm²). These results suggest that D-alpha-tocopherol is able to protect rats, at least in part, from the harmful effects of diabetes on renal function.
Resumo:
The purpose of this work was to evaluate the physical, physicochemical, chemical and microbiological characteristics of in natura açai (Euterpe precatoria Mart.)beverageprocessed and commercialized in Rio Branco, Acre, submitting it to acidification and pasteurization treatments and evaluating their effects. Açaí fruits were processed to obtain the beverage as generally consumed. A 25 L sample was collected from a processing unit at a market in Rio Branco and transported to the Laboratory of Food Technology at the Federal University of Acre, for sampling of the experiments in a completely randomized design. Analyses of total solids, pH, total titrable acidity, proteins, lipids, moulds and yeasts, total and heat-tolerant coliforms at 45 ºC were performed in in natura beverage and after treatments. The results of the ANOVA showed, except for lipids, difference (p < 0.01) in the parameters. The in natura açaí beverage presented an elevated contamination by total and heat-tolerant coliforms at 45 ºC, moulds and yeasts, being in hygienic-sanitary conditions both unsatisfactory and unsafe for consumption. Pasteurization was efficient in reducing the beverage microbiota; it reduced contamination to an acceptable level according to the legislation, warranting food quality and safety. The acidified treatment partially reduced the microbiota. The beverage was classified as fine or type C.
Resumo:
A study was carried out to determine the influence of fibrolytic enzymes derived from mesophilic or thermophilic fungal sources, added at ensiling, on time-course fermentation characteristics and in vitro rumen degradation of maize silage. The mesophilic enzyme was a commercial product derived from Trichodenna reesei (L), whereas the thermophilic enzyme was a crude extract produced from Thermoascus aurantiacus (Ta) in this laboratory. The fungus was cultured using maize cobs as a carbon source. The resulting fermentation extract was deionised to remove sugars and characterised for its protein concentration, main and side enzymic activities, optimal pH, protein molecular mass and isoelectric point. In an additional study, both enzymes were added to maize forage (333.5 g DM/kg, 70.0, 469.8, 227.1 and 307.5 g/kg DM of CP, NDF, ADF and starch, respectively) at two levels each, normalized according to xylanase activity, and ensiled in 0.5 kg capacity laboratory minisilos. Duplicate silos were opened at 2, 4, 8, 15, and 60 days after ensiling, and analysed for chemical characteristics. Silages from 60 days were bulked and in vitro gas production (GP) and organic matter degradability (OMD) profiles evaluated using the Reading Pressure Technique (RPT), in a completely randomised design. The crude enzyme extract contained mainly xylanase and endoglucanase activities, with very low levels of exoglucanase, which probably limited hydrolysis of filter paper. The extract contained three major protein bands of between 29 and 55 kDa, with mainly acidic isoelectric points. Ensiling maize with enzymes lowered (P < 0.05) the final silage pH, with this effect being observed throughout the ensiling process. All enzyme treatments reduced (P < 0.05) ADF contents. Treatments including Ta produced more gas (P < 0.05) than the controls after 24 h incubation in vitro, whereas end point gas production at 96 h was not affected. Addition of Ta increased (P < 0.01) OMD after 12 h (410 and 416 g/kg versus 373 g/kg), whereas both L and Ta increased (P < 0.05) OMD after 24 h. Addition of enzymes from mesophilic or thermophilic sources to maize forage at ensiling increased the rate of acidification of the silages and improved in vitro degradation kinetics, suggesting an improvement in the nutritive quality. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
The UK Biodiversity Action Plan has identified the creation of lowland heathland as an important objective. Heathland restoration studies have identified soil pH, elevated soil nutrients and large weed seed banks as major problems in the restoration of heathland vegetation on ex-arable land. Heathland vegetation is usually found on nutrient-poor acidic soils. Creating acidic soil conditions on ex-arable sites thus may produce a suitable environment for the establishment of heath vegetation. Soil acidification by the addition of sulphur has been shown to reduce the soil pH and the availability of nutrients in arable soils. A series of experiments was established to investigate the effects of soil acidification using sulphur on the establishment of Calluna vulgaris and the development of weed vegetation. The application of sulphur at 0.24 kg m(-2) to an arable soil was found to increase the survival rate of C. vulgaris cuttings planted in it. The mechanism of increased C. vulgaris survival appeared to be by sulphur application significantly reducing the cover of arable weeds arising from the soil seed bank. Higher rates of sulphur application (0.36 and 0.48 kg m(-2)) resulted in the death of many C. vidgaris plants. However C. vulgaris seedlings were able to establish successfully on these ex-arable soils within 1824 months following the addition of these levels of sulphur. The application of sulphur appears to offer a practical solution to heathland creation on ex-arable land. However, it may be necessary to provide an interval of between 18 and 24 months between the application of sulphur and the addition of C. vulgaris plants or seeds for the successful establishment of heathland vegetation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The technique of rapid acidification and alkylation can be used to characterise the redox status of oxidoreductases, and to determine numbers of free cysteine residues within substrate proteins. We have previously used this method to analyse interacting components of the MHC class I pathway, namely ERp57 and tapasin. Here, we have applied rapid acidification alkylation as a novel approach to analysing the redox status of MHC class I molecules. This analysis of the redox status of the MHC class I molecules HLA-A2 and HLA-B27, which is strongly associated with a group of inflammatory arthritic disorders referred to as Spondyloarthropathies, revealed structural and conformational information. We propose that this assay provides a useful tool in the study of in vivo MHC class I structure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 μeq l− 1 over 15 years from 1988–2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.
Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils
Resumo:
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.
Resumo:
Bifidobacterium strains of human origin were screened for their ability to grow in milk and produce exopolysaccharides (EPS). Bifidobacterium strains were grown in low-fat UHT milk and were evaluated for their growth, acidification properties, EPS production and ability to increase the viscosity of fermented milk. The strains that grew well in milk were strains of Bifidobacterium breve and Bifidobacterium longum and B. longum subsp. longum. Among the 22 strains, EPS was produced by Bifidobacterium bifidum ALM 35, B. breve NCIMB 8807 (UCC 2003), B. longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 at concentrations ranging from 25 to 140 . The molecular mass and the composition varied considerably, depending on the strain. Analysis of the correlation between the apparent viscosity of the fermented milk and pH indicated that the EPS produced during the acidification of milk possibly contributed to the viscosity of the milk products.
Resumo:
The aim of the present study was to find out the best growing conditions for exopolysaccharide (EPS) producing bifidobacteria, which improve their functionality in yoghurt-like products. Two Bifidobacterium strains were used in this study, Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. In the first part of the study the effect of casein hydrolysate, lactalbumin hydrolysate, whey protein concentrate and whey protein isolate, added at 1.5% w/v in skim milk, was evaluated in terms of cell growth and EPS production; skim milk supplemented with yeast extract served as the control. Among the various nitrogen sources, casein hydrolysate (CH) showed the highest cell growth and EPS production for both strains after 18 h incubation and therefore it was selected for subsequent work. Based on fermentation experiments using different levels of CH (from 0.5 to 2.5% w/v) it was deduced that 1.5% (w/v) CH resulted in the highest EPS production, yielding 102 and 285 mg L− 1 for B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486, respectively. The influence of temperature on growth and EPS production of both strains was further evaluated at 25, 30, 37 and 42 °C for up to 48 h in milk supplemented with 1.5% (w/v) CH. The temperature had a significant effect on growth, acidification and EPS production. The maximum growth and EPS production were recorded at 37 °C for both strains, whereas no EPS production was observed at 25 °C. Lower EPS production for both strains were observed at 42 °C, which is the common temperature used in yoghurt manufacturing compared to that at 37 °C. The results showed that the culture conditions have a clear effect on the growth, acidification and EPS production, and more specifically, that skim milk supplemented with 1.5% (w/v) CH could be used as a substrate for the growth of EPS-producing bifidobacteria, at 37 °C for 24 h, resulting in the production of a low fat yoghurt-like product with improved functionality.
Resumo:
The effect of phase separation and batch duration on the trophic stages of anaerobic digestion was assessed for the first time in leach beds coupled to methanogenic reactors digesting maize (Zea mays). The system was operated for consecutive batches of 7, 14 and 28 days for ~120 days. Hydrolysis rate was higher the shorter the batch, reaching 8.5 gTSdestroyed d-1 in the 7-day system. Phase separation did not affect acidification but methanogenesis was enhanced in the short feed cycle leach beds. Phase separation was inefficient on the 7-day system, where ~89% of methane was produced in the leach bed. Methane production rate increased with shortening the feed cycle, reaching 3.523 l d-1 average in the 7-day system. Low strength leachate from the leach beds decreased methanogenic activity of methanogenic reactors’ sludges. Enumeration of cellulolytic and methanogenic microorganisms indicated a constant inoculation of leach beds and methanogenic reactors through leachate recirculation.
Resumo:
More than half of global soil carbon is stored as carbonates, primarily in arid and semi-arid zones. Climate change models predict more frequent and severe rainfall events in some parts of the globe, many of which are dominated by calcareous soils. Such events trigger substantial increases in soil CO2 efflux. We hypothesised that the primary source of CO2 emissions from calcareous, arid zone soil during a single wetting event is abiotic and that soil acidification and wetting have a positive, potentially interacting, effect. We manipulated soil pH, soil moisture, and controlled soil respiration by gamma irradiating half of an 11 day incubation experiment. All manipulated experimental treatments had a rapid and enormous effect on CO2 emission. Respiration contributed ca. 5% of total CO2 efflux; the major source (carbonate buffering) varied depending on the extent of acidification and wetting. Maximum CO2 efflux occurred when pH was lowest and at intermediate matric potential. CO2 efflux was lowest at native pH when soil was air dry. Our data suggest that there may be an underestimate of soil-atmosphere carbon fluxes in arid ecosystems with calcareous soils. There is also a clear potential that these soils may become net carbon sources depending on changes in rainfall patterns, rainfall acidity, and future land management. Our findings have major implications for carbon cycling in arid zone soil and further study of carbon dynamics in these terrestrial systems at a landscape level will be required if we are to improve global climate and carbon cycling models.