322 resultados para ABSORBER
Resumo:
This work considers the vibrating system that consists of a snap-through truss absorber coupled to an oscillator under excitation of an electric motor with an eccentricity and limited power, characterizing a non-ideal oscillator. It is aimed to use the non-linearity and quasi-zero stiffness of absorber (snap-through truss absorber) to obtain a significantly attenuation the jump phenomenon. There is also an interest to exhibit the reduction of Sommerfeld effect, to confirm the saturation phenomenon occurrence and show the power transfer in a non-linear structure, evidencing the pumping energy. As shown by simulations in this work, this absorber allows the energy pumping before and during the jump phenomenon, decreasing the higher amplitudes of considered system. Additionally, the occurrence of saturation phenomenon due use of snap-through truss absorber is verified. The analysis of parameter uncertainties was introduced. Sensitivity of system with parametric errors demonstrated a trustable system. © IMechE 2012.
Resumo:
Incluye Bibliografía
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work, considers a vibrating system, which consists of a snap-through truss absorber (STTA) coupled to an oscillator, under excitation of an DC motor, with an eccentricity and limited power, characterizing a non-ideal oscillator (NIO). It is aimed to use the absorber STTA, to establish the conditions, that we have the maxim attenuation of the jumpphenomenon (Sommerfeld Effect). Here, weare interestedin determining the conditions of the vibrating system, in which there arereduced amplitudes of the oscillator, when it passes through the region of resonance.
Resumo:
In dieser Dissertation wird die Ladungsträgergeneration und -rekombination in neuen polymeren Absorbermaterialien für organische Solarzellen untersucht. Das Verständnis dieser Prozesse ist wesentlich für die Entwicklung neuer photoaktiver Materialsysteme, die hohe Effizienzen erzielen und organische Solarzellen konkurrenzfähig im Bereich der erneuerbaren Energien machen. Experimentell verwendet diese Arbeit hauptsächlich die Methode der transienten Absorptionsspektroskopie, die sich für die Untersuchung photophysikalischer Prozesse auf einer Zeitskala von 100 fs bis 1 ms als sehr leistungsfähig erweist. Des Weiteren wird eine soft-modeling Methode vorgestellt, die es ermöglicht, photophysikalische Prozesse aus einer gemessenen transienten Absorptions-Datenmatrix zu bestimmen, wenn wenig a priori Kenntnisse der Reaktionskinetiken vorhanden sind. Drei unterschiedliche Donor:Akzeptor-Systeme werden untersucht; jedes dieser Systeme stellt eine andere Herangehensweise zur Optimierung der Materialien dar in Bezug auf Lichtabsorption über einen breiten Wellenlängenbereich, effiziente Ladungstrennung und schnellen Ladungstransport. Zuerst wird ein Terpolymer untersucht, das aus unterschiedlichen Einheiten für die Lichtabsorption und den Ladungstransport besteht. Es wird gezeigt, dass es möglich ist, den Fluss angeregter Zustände vom Chromophor auf die Transporteinheit zu leiten. Im zweiten Teil wird der Einfluss von Kristallinität auf die freie Ladungsträgergeneration mit einer Folge von ternären Mischungen, die unterschiedliche Anteile an amorphem und semi-kristallinem Polymer enthalten, untersucht. Dabei zeigt es sich, dass mit steigendem amorphen Polymeranteil sowohl der Anteil der geminalen Ladungsträgerrekombination erhöht als auch die nicht-geminale Rekombination schneller ist. Schlussendlich wird ein System untersucht, in dem sowohl Donor als auch Akzeptor Polymere sind, was zu verbesserten Absorptionseigenschaften führt. Die Rekombination von Ladungstransferzuständen auf der unter 100 ps Zeitskala stellt hier den hauptsächliche Verlustkanal dar, da freie Ladungsträger nur an Grenzflächen erzeugt werden können, an denen Donor und Akzeptor face-to-face zueinander orientiert sind. Darüber hinaus wird festgestellt, dass weitere 40-50% der Ladungsträger durch die Rekombination von Grenzflächenzuständen verloren gehen, die aus mobilen Ladungsträgern geminal gebildet werden.
Resumo:
The transport properties of thin-film solar cells based on wide-gap CuGaSe(2) absorbers have been investigated as a function of the bulk [Ga]/[Cu] ratio ranging from 1.01 to 1.33. We find that (i) the recombination processes in devices prepared from absorbers with a composition close to stoichiometry ([Ga]/[Cu] = 1.01) are strongly tunnelling assisted resulting in low recombination activation energies (E(a)) of approx. 0.95 eV in the dark and 1.36 eV under illumination. (ii) With an increasing [Ga]/[Cu] ratio, the transport mechanism changes to be dominated by thermally activated Shockley-Read-Hall recombination with similar E(a) values of approx. 1.52-1.57 eV for bulk [Ga]/[Cu] ratios of 1.12-1.33. The dominant recombination processes take place at the interface between CdS buffer and CuGaSe(2) absorber independently from the absorber composition. The increase of E(a) with the [Ga]/[Cu] ratio correlates with the open circuit voltage and explains the better performance of corresponding solar cells.
Resumo:
The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.
Resumo:
The Cu2ZnSnS4 (CZTS) semiconductor is a potential photovoltaic material due to its optoelectronic properties. These optoelectronic properties can be potentially improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using Cr as an impurity. We carried out first-principles calculations within the density functional theory analyzing three substitutions: Cu, Sn, or Zn by Cr. In all cases, the Cr introduces a deeper band into the host energy bandgap. Depending on the substitution, this band is full, empty, or partially full. The absorption coefficients in the independent-particle approximation have also been obtained. Comparison between the pure and doped host's absorption coefficients shows that this deeper band opens more photon absorption channels and could therefo:e increase the solar-light absorption with respect to the host.
Resumo:
Thinning the absorber layer is one of the possibilities envisaged to further decrease the production costs of Cu(In,Ga)Se2 (CIGSe) thin films solar cell technology. In the present study, the electronic transport in submicron CIGSe-based devices has been investigated and compared to that of standard devices. It is observed that when the absorber is around 0.5 μm-thick, tunnelling enhanced interface recombination dominates, which harms cells energy conversion efficiency. It is also shown that by varying either the properties of the Mo back contact or the characteristics of 3-stage growth processing, one can shift the dominating recombination mechanism from interface to space charge region and thereby improve the cells efficiency. Discussions on these experimental facts led to the conclusions that 3-stage process implies the formation of a CIGSe/CIGSe homo-interface, whose location as well as properties rule the device operation; its influence is enhanced in submicron CIGSe based solar cells.
Resumo:
Intermediate-band materials can improve the photovoltaic efficiency of solar cells through the absorption of two subband-gap photons that allow extra electron-hole pair formations. Previous theoretical and experimental findings support the proposal that the layered SnS2 compound, with a band-gap of around 2 eV, is a candidate for an intermediate-band material when it is doped with a specific transition-metal. In this work we characterize vanadium doped SnS2 using density functional theory at the dilution level experimentally found and including a dispersion correction combined with the site-occupancy-disorder method. In order to analyze the electronic characteristics that depend on geometry, two SnS2 polytypes partially substituted with vanadium in symmetry-adapted non-equivalent configurations were studied. In addition the magnetic configurations of vanadium in a SnS2 2H-polytype and its comparison with a 4H-polytype were also characterized. We demonstrate that a narrow intermediate-band is formed, when these dopant atoms are located in different layers. Our theoretical predictions confirm the recent experimental findings in which a paramagnetic intermediate-band material in a SnS2 2H-polytype with 10% vanadium concentration is obtained.
Resumo:
Wave energy conversion has an essential difference from other renewable energies since the dependence between the devices design and the energy resource is stronger. Dimensioning is therefore considered a key stage when a design project of Wave Energy Converters (WEC) is undertaken. Location, WEC concept, Power Take-Off (PTO) type, control strategy and hydrodynamic resonance considerations are some of the critical aspects to take into account to achieve a good performance. The paper proposes an automatic dimensioning methodology to be accomplished at the initial design project stages and the following elements are described to carry out the study: an optimization design algorithm, its objective functions and restrictions, a PTO model, as well as a procedure to evaluate the WEC energy production. After that, a parametric analysis is included considering different combinations of the key parameters previously introduced. A variety of study cases are analysed from the point of view of energy production for different design-parameters and all of them are compared with a reference case. Finally, a discussion is presented based on the results obtained, and some recommendations to face the WEC design stage are given.
Resumo:
In general, a major challenge for the exploitation of renewable energies is to improve their efficiency. In electricity generation from the energy of ocean waves, not unlike other technologies, the converter must be optimized to make the energy harvesting economically feasible. This paper proposes a passive tuning control strategy of a point absorber in which the power captured is maximized by controlling the electromagnetic force of the generator with a resistance emulation approach. The proposed strategy consists of mapping the optimal values for regular waves and applying them to irregular waves. This strategy is tested in a wave energy converter in which the generator is connected to a boost rectifier converter whose controller is designed to emulate a resistance. The power electronics system implemented is validated by comparing its performance with the case in which the generator is directly connected to a resistive load. The simulation results show the effectiveness of the proposed strategy as the maximum captured power is concentrated around the optimal values previously calculated and with the same behavior for both excitations.