996 resultados para 8-OXOGUANINE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome. Journal of Cerebral Blood Flow & Metabolism (2011) 31, 680-692; doi:10.1038/jcbfm.2010.147; published online 25 August 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids TFAM plays an important role in mitochondrial transcription and replication TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated However, a function for TFAM in BER has not yet been investigated This study examines the role of TFAM in BER In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase gamma (pol gamma) On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in alpha OGG1 protein levels TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-Induced inhibition of BER proteins Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions Published by Elsevier B V

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of strategies for the protection of oral tissues against the adverse effects of resin monomers is primarily based on the elucidation of underlying molecular mechanisms. The generation of reactive oxygen species beyond the capacity of a balanced redox regulation in cells is probably a cause of cell damage. This study was designed to investigate oxidative DNA damage, the activation of ATM, a reporter of DNA damage, and redox-sensitive signal transduction through mitogen-activated protein kinases (MAPKs) by the monomer triethylene glycol dimethacrylate (TEGDMA). TEGDMA concentrations as high as 3-5 mm decreased THP-1 cell viability after a 24 h and 48 h exposure, and levels of 8-oxoguanine (8-oxoG) increased about 3- to 5-fold. The cells were partially protected from toxicity in the presence of N-acetylcysteine (NAC). TEGDMA also induced a delay in the cell cycle. The number of THP-1 cells increased about 2-fold in G1 phase and 5-fold in G2 phase in cultures treated with 3-5 mm TEGDMA. ATM was activated in THP-1 cells by TEGDMA. Likewise, the amounts of phospho-p38 were increased about 3-fold by 3 mm TEGDMA compared to untreated controls after a 24 h and 48 h exposure period, and phospho-ERK1/2 was induced in a very similar way. The activation of both MAPKs was inhibited by NAC. Our findings suggest that the activation of various signal transduction pathways is related to oxidative stress caused by a resin monomer. Signaling through ATM indicates oxidative DNA damage and the activation of MAPK pathways indicates oxidative stress-induced regulation of cell survival and apoptosis. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isoflurane is a volatile halogenated anesthetic used especially for anesthesia maintenance whereas propofol is a venous anesthetic utilized for anesthesia induction and maintenance, and reportedly an antioxidant. However, there are still controversies related to isoflurane-induced oxidative stress and it remains unanswered whether the antioxidant effects occur in patients under propofol anesthesia.Taking into account the importance of better understanding the role of anesthetics on oxidative stress in anesthetized patients, the present study was designed to evaluate general anesthesia maintained with isoflurane or propofol on antioxidant status in patients who underwent minimally invasive surgeries.We conducted a prospective randomized trial in 30 adult patients without comorbidities who underwent elective minor surgery (septoplasty) lasting at least 2 h admitted to a Brazilian tertiary hospital.The patients were randomly allocated into 2 groups, according to anesthesia maintenance (isoflurane, n = 15 or propofol, n = 15). Peripheral blood samples were drawn before anesthesia (baseline) and 2-h after anesthesia induction.The primary outcomes were to investigate the effect of either isoflurane or propofol anesthesia on aqueous plasma oxidizability and total antioxidant performance (TAP) by fluorometry as well as several individual antioxidants by high-performance liquid chromatography. As secondary outcome, oxidized genetic damage (7,8-dihydro-8-oxoguanine, known as 8-oxo-Gua) was investigated by the comet assay.Both anesthesia techniques (isoflurane or propofol) for a 2-h period resulted in a significant decrease of plasma α-tocopherol, but not other antioxidants including uric acid, carotenoids, and retinol (P > 0.05). Propofol, in contrast to isoflurane anesthesia, significantly increased (P < 0.001) anti-inflammatory/antioxidant plasma γ-tocopherol concentration in patients. Both anesthesia types significantly enhanced hydrophilic antioxidant capacity and TAP, with no significant difference between them, and 8-oxo-Gua remained unchanged during anesthesia in both groups. In addition, both anesthetics showed antioxidant capacity in vitro.This study shows that anesthesia maintained with either propofol or isoflurane increase both hydrophilic and total antioxidant capacity in plasma, but only propofol anesthesia increases plasma γ-tocopherol concentration. Additionally, both types of anesthetics do not lead to oxidative DNA damage in patients without comorbidities undergoing minimally invasive surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patients fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents and uses the techniques of computational chemistry to explore two different processes induced in human skin by ultraviolet light. The first is the transformation of urocanic acid into a immunosuppressing agent, and the other is the enzymatic action of the 8-oxoguanine glycosylase enzyme. The photochemistry of urocanic acid is investigated by time-dependent density functional theory. Vertical absorption spectra of the molecule in different forms and environments is assigned and candidate states for the photochemistry at different wavelengths are identified. Molecular dynamics simulations of urocanic acid in gas phase and aqueous solution reveals considerable flexibility under experimental conditions, particularly for for the cis isomer where competition between intra- and inter-molecular interactions increases flexibility. A model to explain the observed gas phase photochemistry of urocanic acid is developed and it is shown that a reinterpretation in terms of a mixture between isomers significantly enhances the agreement between theory and experiment , and resolves several peculiarities in the spectrum. A model for the photochemistry in the aqueous phase of urocanic acid is then developed, in which two excited states governs the efficiency of photoisomerization. The point of entrance into a conical intersection seam is shown to explain the wavelength dependence of photoisomerization quantum yield. Finally some mechanistic aspects of the DNA repair enzyme 8-oxoguanine glycosylase is investigated with density functional theory. It is found that the critical amino acid of the active site can provide catalytic power in several different manners, and that a recent proposal involving a SN1 type of mechanism seems the most efficient one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die endogene Bildung reaktiver Sauerstoffspezies (ROS) - wie beispielsweise Hydroxyl-Radikale, Superoxid-Radikalanionen, Wasserstoffperoxid und Singulett-Sauerstoff - bei essentiellen Stoffwechselreaktionen in allen aeroben Lebewesen stellt eine potentielle Gefahr für die Integrität der DNA in jeder Zelle dar. ROS generieren in der DNA unter anderem oxidative DNA-Modifikationen (zum größten Teil wahrscheinlich 8-Hydroxyguanin (8-oxoG)), welche wiederum zu einem Teil zu Mutationen führen.In dieser Arbeit wurden Untersuchungen vorgenommen, in welchem Ausmaß zum einen die Steady-State-Level oxidativer DNA-Schäden in Säugerzellen zum anderen die Reparaturgeschwindig-keiten solcher DNA-Modifikationen durch verschiedene endogene Faktoren beeinflußt werden.Im Mittelpunkt der Arbeit stand dabei die Charakterisierung der 8-Hydroxyguaninglykosylase der Säugerzellen. Sie ist das Produkt des OGG1-Gens, das erst 1997 kloniert wurde. In transfizierten Zellinien konnte durch eine konstitutive Überexpression des menschlichen OGG1-Gens demonstriert werden, daß die Reparatur von induzierten oxidativen Basenmodifikationen bis zu dreifach beschleunigt wird und daß eine Korrelation zwischen dem Grad der Überexpression und der Reparaturrate besteht. Dagegen waren die Steady-State-Level der oxidativen DNA-Schäden durch die Überexpression unbeeinflußt. Sowohl bei den spontanen Mutationsraten als auch bei den durch oxidative Schädigungen induzierten Mutationsfrequenzen konnte keine Erniedrigung bedingt durch die hOGG1-Überexpression beobachtet werden.Weitere Untersuchungen zur Bedeutung von Ogg1-Protein konnten in Mäusezellen durchgeführt werden, in denen das OGG1-homologe Mäusegen, mOGG1, homozygot inaktiviert (mOGG1(-/-)) worden war. Hierbei konnte gezeigt werden, daß in den mOGG1-defizienten Zellen im Vergleich zu den entsprechenden Wildtyp-Zellen (mOGG1(+/+)) eine Reparatur induzierter oxidativer Basenmodifikationen erst nach 8 h einsetzt, während in den Kontrollzellen schon nach 3-4 h 50 % der Modifikationen repariert waren. Die Steady-State-Level oxidativer Modifikationen in mOGG1(-/-)-Zellen waren in immortalisierten, schnell proliferierenden Mäusefibroblasten nur um den Faktor 1.4, in primären Mäusehepatocyten jedoch um den Faktor 2.5 gegenüber den Wildtyp-Zellen erhöht.Inwieweit das menschliche Reparaturprotein Xrcc1 (X-ray repair cross complementing group 1) auch an der Prozessierung oxidativer DNA-Modifikationen beteiligt ist, und ob dabei möglicherweise eine Interaktion mit Ogg1 vorliegt, wurde in der XRCC1-defizienten CHO-Zellinie EM9 untersucht. Dabei wurde ermittelt, daß weder die Steady-State-Level noch die Reparaturkinetiken der oxidativen Basenmodifikationen durch die XRCC1-Defizienz beeinflußt werden. Aufgrund weiterer Ergebnisse kann jedoch nicht ausgeschlossen werden, daß das Xrcc1-Protein zumindest am Ligationsschritt während der Reparatur oxidativer DNA-Schäden beteiligt ist.In einem weiteren Schwerpunkt der Arbeit wurde untersucht, ob Unterschiede im Steady-State-Level in Abhängigkeit von Organ-, Gewebe- und Zelltyp auftreten. Dazu wurden Untersuchungen in Bronchialkarzinom-Zellinien verschiedener Subtypen durchgeführt. Des weiteren wurde zur Frage der Zelltyp-Abhängigkeit in der menschlichen Zellinie HL60 der Einfluß des Zelldifferenzierungsstadiums auf die Steady-State-Level untersucht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit war es, das Zusammenspiel zwischen DNA-Reparatur und zellulärem anitoxidativen Abwehrsystem in Melanomzellen und gesunden Hautfibroblasten näher zu untersuchen. Dabei konnte gezeigt werden, dass die dominierenden DNA-Läsionen im Falle einer Bestrahlung mit sichtbarem Licht (400 – 800 nm) Fpg-sensitive Läsionen, zu denen die Basenmodifikation 7,8-Dihydro-8-oxoguanin (8-oxoG) gehört, und im Falle der UVA-Bestrahlung Cyclobutan-Pyrimidindimere (CPDs) sind. Sowohl Melanomzellen als auch Hautfibroblasten waren problemlos in der Lage, die durch sichtbares Licht und UVA-Strahlung induzierten oxidativen DNA-Modifikationen zu reparieren. Jedoch reagierten Melanomzellen in einer adaptiven Antwort mit einer Erhöhung ihres Glutathion-Gehalts auf ein Maximum (nach circa 10 - 14 h) nach Bestrahlung mit sichtbarem Licht, wohingegen die Hautfibroblasten einen massiven Einbruch direkt nach Bestrahlung und eine extrem lange Erholungsphase über 48 h aufzuweisen hatten. Die darauffolgende Untersuchung der DNA-Reparaturkapazität der Zellen unter Bedingungen von oxidativem Stress mit vorangegangener Depletion intrazellulären Glutathions zeigten eine dramatische, nahezu vollständige Hemmung der Reparatur durch UVA- bzw. Sonnenlicht-induzierter Fpg-sensitiver DNA-Modifikationen (8-oxoG) - sowohl in Melanomzellen als auch in Hautfibroblasten. Dieser Effekt ließ sich durch den Zusatz von Dithiothreitol (DTT), nach erfolgter Bestrahlung der Glutathion-depletierten Zellen, wieder komplett revertieren. Diese Ergebnisse weisen darauf hin, dass an der Reparatur ein redoxempfindliches Protein oder zellulärer Cofaktor beteiligt sein muß. Zudem konnte durch Untersuchungen der Nukleotidexzisionsreparatur (NER) und der Einzelstrangbruchreparatur nach dem gleichen Versuchsdesign gezeigt werden, dass es sich hierbei sehr wahrscheinlich um einen für die Basenexzisionsreparatur (BER) von 7,8-dihydro-8-oxo-guanine (8-oxoG) exklusiven Effekt handelte. Zwei der wichtigsten Reparaturproteine der BER, nämlich hOGG1 und APE1, wurden anschließend auf ihre Funktionsfähigkeit hin untersucht, da es naheliegend war, dass der Reparaturhemmung ein Funktionsverlust eines dieser beiden Enzyme zugrunde liegen könnte. Im Falle des APE1-Proteins konnte dies ausgeschlossen werden, da mit Hilfe der Alkalischen Elution die volle Funktionsfähigkeit für die Reparatur von AP-Läsionen nachgewiesen werden konnte. Interessanterweise zeigte aber das hOGG1-Protein eine zwischen der dritten und vierten Stunde nach Bestrahlung Glutathion-depletierter Zellen stark abfallende Aktivität der 8-oxoG-Glykosylasefunktion. Die Western-Blot-Analyse ergab allerdings keinen Hinweis auf eine Proteinoxidation von hOGG1. Möglicherweise wird nicht hOGG1 selbst, wohl aber ein anderes, für eine konzertierte Abfolge der einzelnen Reparaturschritte entscheidend notwendiges Protein innerhalb der Zelle durch ROS leicht oxidiert. In jedem Fall bleibt festzustellen, dass Glutathion eine wichtige Aufgabe hinsichtlich einer voll funktionsfähigen Basenexzisionreparatur zuzukommen scheint. Die Ergebnisse unterstreichen die mögliche Bedeutung von oxidativem Stress für die Entstehung von Krebs durch Sonnenlicht, insbesondere durch UVA, da die durch die Strahlung (und eventuell auftretende Entzündung) gebildeten ROS nicht nur DNA-Schäden induzieren, sondern auch ihre Reparatur verhindern können.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative DNA-Basenmodifikationen, wie 7,8-Dihydro-8-oxoguanin (8-oxoG), werden endogen in allen Zellen gebildet. Die beobachtbaren Spiegel ergeben sich aus dem Gleichgewicht zwischen der Bildung durch reaktive Sauerstoffspezies (ROS), sowie der gleichzeitigen Reparatur der DNA-Schäden. Durch ihr hohes mutagenes Potential, tragen oxidative DNA-Basenmodifikationen zur spontanen Mutationsrate bei. Der Ausfall wichtiger DNA-Reparaturmechanismen führt in Ogg1(-/-)Csb(-/-)-Knockout-Mäusen zu einem Anstieg von 8 oxoG und der spontanen Mutationsrate.rnIn dieser Arbeit sollte untersucht werden, ob die basalen Spiegel an oxidativen Basenmodifikationen und die spontanen Mutationsraten in vivo durch die orale Gabe von Resveratrol moduliert werden können. Resveratrol ist ein Pflanzeninhaltsstoff (u.a. aus Rotwein) mit einer Vielzahl von Wirkungen, der bereits in zahlreichen Studien ein chemopräventives Potential gezeigt hat und antioxidativ wirkt.rnAn verschiedenen Mausgenotypen wurden zum einen eine Kurzzeit-Behandlung (7 Tage mit 100 mg/kg per Gavage) und zum anderen eine Langzeit-Behandlung (3-9 Monate mit 0,04% ad libitum) mit Resveratrol durchgeführt. Die oxidativen DNA Schäden wurden in primären Maushepatozyten mit Hilfe einer modifizierten Alkalischen Elution, mit der bakteriellen Formamidopyrimidin-DNA Glykosylase als Sonde, bestimmt. Zur Analyse der Mutationsrate wurde der BigBlue® Mutationsassay mit anschließender Sequenzierung der Mutationen verwendet.rnDie Ergebnisse zeigen, dass die Kurzzeit- und die Langzeit-Behandlung mit Resveratrol die basalen Spiegel oxidativer DNA-Basenmodifikationen senken. Die Reduktion ist jeweils wesentlich ausgeprägter in den reparaturdefizienten Ogg1(-/-)Csb(-/-)-Mäusen zu erkennen. Auch die spontane Mutationsrate wird durch eine mehrmonatige Behandlung mit Resveratrol um ungefähr 20-30% reduziert.rnAnschließende mechanistische Untersuchungen zeigten, dass dieser Schutz wahrscheinlich auf einer Induktion der antioxidativen Schutzmechanismen begründet ist. So wurde gefunden, dass primäre Hepatozyten aus mit Resveratrol behandelten Mäusen wesentlich besser gegen exogen herbeigeführten oxidativen Stress geschützt sind, als Hepatozyten von unbehandelten Tieren. Ein weiterer Hinweis ist die Hochregulation der mRNA-Spiegel von verschiedenen antioxidativen Schutzenzymen, wie Superoxiddismutase 1 / 2, Hämoxygenase 1, Glutathionperoxidase 1, nach der Gabe von Resveratrol in Mäuselebern. Außerdem sind die oxidativen Markermutationen (GC->TA-Transversionen) stärker von der Reduktion der spontanen Mutationsrate betroffen, als andere Mutationen (z.B. GC->AT-Transitionen).rnDie Ergebnisse zeigen erstmalig, dass spontane Mutationen in vivo durch Fremdstoffe in der Nahrung reduziert werden können. Im Falle von Resveratrol wird diese Reduktion wahrscheinlich durch eine Stimulation der antioxidativen Schutzmechanismen ausgelöst.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of damaged nucleobases in DNA can negatively influence transcription of genes. One of the mechanisms by which DNA damage interferes with reading of genetic information is a direct blockage of the elongating RNA polymerase complexes – an effect well described for bulky adducts induced by several chemical substances and UV-irradiation. However, other mechanisms must exist as well because many of the endogenously occurring non-bulky DNA base modifications have transcription-inhibitory properties in cells, whilstrnnot constituting a roadblock for RNA polymerases under cell free conditions. The inhibition of transcription by non-blocking DNA damage was investigated in this work by employing the reporter gene-based assays. Comparison between various types of DNA damage (UV-induced pyrimidine photoproducts, oxidative purine modifications induced by photosensitisation, defined synthetic modified bases such as 8-oxoguanine and uracil, and sequence-specific single-strand breaks) showed that distinct mechanisms of inhibition of transcription can be engaged, and that DNA repair can influence transcription of the affectedrngenes in several different ways.rnQuantitative expression analyses of reporter genes damaged either by the exposure of cells to UV or delivered into cells by transient transfection supported the earlier evidence that transcription arrest at the damage sites is the major mechanism for the inhibition of transcription by this kind of DNA lesions and that recovery of transcription requires a functional nucleotide excision repair gene Csb (ERCC6) in mouse cells. In contrast, oxidisedrnpurines generated by photosensitisation do not cause transcriptional blockage by a direct mechanism, but rather lead to transcriptional repression of the damaged gene which is associated with altered histone acetylation in the promoter region. The whole chain of events leading to transcriptional silencing in response to DNA damage remains to be uncovered. Yet, the data presented here identify repair-induced single-strand breaks – which arise from excision of damaged bases by the DNA repair glycosylases or endonucleases – as arnputative initiatory factor in this process. Such an indirect mechanism was supported by requirement of the 8-oxoguanine DNA glycosylase (OGG1) for the inhibition of transcription by synthetic 8-oxodG incorporated into a reporter gene and by the delays observed for the inhibition of transcription caused by structurally unrelated base modifications (8-oxoguanine and uracil). It is thereby hypothesized that excision of the modified bases could be a generalrnmechanism for inhibition of transcription by DNA damage which is processed by the base excision repair (BER) pathway. Further gene expression analyses of plasmids containing single-strand breaks or abasic sites in the transcribed sequences revealed strong transcription inhibitory potentials of these lesions, in agreement with the presumption that BER intermediates are largely responsible for the observed effects. Experiments with synthetic base modifications positioned within the defined DNA sequences showed thatrninhibition of transcription did not require the localisation of the lesion in the transcribed DNA strand; therefore the damage sensing mechanism has to be different from the direct encounters of transcribing RNA polymerase complexes with DNA damage.rnAltogether, this work provides new evidence that processing of various DNA basernmodifications by BER can perturb transcription of damaged genes by triggering a gene silencing mechanism. As gene expression can be influenced even by a single DNA damage event, this mechanism could have relevance for the endogenous DNA damage induced in cells under normal physiological conditions, with a possible link to gene silencing in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative DNA-Schäden, wie 7,8-Dihydro-8-oxoguanin (8-oxoG), werden kontinuierlich in allen Zellen durch endogene und exogene Noxen gebildet. Ohne eine effektive Reparatur können DNA-Schäden nach erfolgter Replikation als Mutationen fixiert werden und somit die Kanzerogenese initiieren.rnUntersuchungsgegenstand dieser Arbeit war die Reparatur, vorrangig von oxidativen DNA-Schäden, in humanen Lymphozyten. Dabei sollte ebenfalls überprüft werden, inwiefern eine Aktivierung dieser Immunzellen, die u.a. zu einer Initiierung der Proliferation führt, modulierend auf die DNA-Reparatur wirkt. Für diese Untersuchungen wurden primäre Lymphozyten aus Buffy Coats isoliert. Eine Aktivierung von T Lymphozyten, welche physiologisch Antigen-vermittelt über den T-Zell-Rezeptor verläuft, wurde durch eine ex vivo Stimulation mit Phytohämagglutinin (PHA) nachgeahmt. Die Induktion oxidativer DNA-Basenmodifikationen erfolgte mit Hilfe des Photosensibilisators Acridinorange in Kombination mit sichtbarem Licht. Das Schadensausmaß sowie die Reparatur wurden mittels der Alkalischen Elution unter Nutzung der Reparaturendonuklease Fpg bestimmt.rnDie Ergebnisse zeigten, dass global keine Reparatur induzierter oxidativer DNA-Schäden in primären Lymphozyten stattfindet. Eine Aktivierung der Lymphozyten mittels PHA führte hingegen zu einer deutlichen Reduktion der induzierten DNA-Schäden innerhalb einer 24-stündigen Reparaturzeit. Diese verbesserte Reparatur konnte auf eine Steigerung der Transkription und somit eine erhöhte Proteinmenge von OGG1, welches die Reparatur von 8-oxoG DNA-Glykosylase initiiert, zurückgeführt werden. Weiterführende mechanistische Untersuchungen deuten darauf hin, dass der transkriptionellen Regulation von OGG1 eine Aktivierung der JNK-Signalkaskade zugrunde liegt. Als ein verantwortlicher Transkriptionsfaktor konnte NF-YA identifiziert werden. Dessen erhöhte Bindung am OGG1-Promotor in Folge einer PHA-Stimulation konnte durch eine JNK-Hemmung reduziert werden.rnDie Ergebnisse dieser Arbeit zeigen, dass eine Aktivierung von Lymphozyten, welche die Proliferation initiiert und dadurch mit dem Risiko für die Entstehung von Mutationen und malignen Entartungen verknüpft ist, gleichzeitig eine transkriptionelle Hochregulation von OGG1 bewirkt, die die Reparatur oxidativer DNA-Schäden sicherstellt. Die Fähigkeit zur Steigerung der DNA-Reparatur unter den gezeigten Bedingungen bietet den proliferierenden Zellen einen Schutzmechanismus zur Erhaltung ihrer genomischen Stabilität.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.