957 resultados para 770100 Climate and Weather
Resumo:
Regression analyses of a long series of light-trap catches at Narrabri, Australia, were used to describe the seasonal dynamics of Helicoverpa armigera (Hubner). The size of the second generation was significantly related to the size of the first generation, to winter rainfall, which had a positive effect, and to spring rainfall which had a negative effect. These variables accounted for up to 96% of the variation in size of the second generation from year to year. Rainfall and crop hosts were also important for the size of the third generation. The area and tonnage of many potential host crops were significantly correlated with winter rain. When winter rain was omitted from the analysis, the sizes of both the second and third generations could be expressed as a function of the size of the previous generation and of the areas planted to lucerne, sorghum and maize. Lucerne and maize always had positive coefficients and sorghum a negative one. We extended our analysis to catches of H. punctigera (Wallengren), which declines in abundance after the second generation. Winter rain had a positive effect on the sizes of the second and third generations, and rain in spring or early summer had a negative effect. Only the area grown to lucerne had a positive effect on abundance. Forecasts of pest levels from a few months to a few weeks in advance are discussed, along with the improved understanding of the seasonal dynamics of both species and the significance of crops in the management of insecticide resistance for H. armigera.
Resumo:
Methods Stepwise regression of annual data was applied to model incidence, calculated based on 91 cases, from lagged variables: antecedent precipitation, air temperature, soil water storage, absolute and relative air humidity, and Southern Oscillation Index (SOI). Results Multiple regression analyses resulted in a model, which explains 49% of the incidence variance, taking into account the absolute air humidity in the year of exposure, soil water storage and SOI of the previous 2 years. Conclusions The correlations may reflect enhanced fungal growth after increase in soil water storage in the longer term and greater spore release with increase in absolute air humidity in the short term.
Resumo:
The present study investigated how demographic, personality, and climate variables act to predict departmental theft. Participants in the current field survey were 153 employees from 17 departments across two stores. The results of confirmatory factor analyses supported the construct validity of the Big Five Inventory (John, Donahue, & Kentle, 1991) and the Occupational Climate Questionnaire (Furnham & Gunter, 1997) in UK work settings. The results of regression analysis indicate that the variability in departmental theft is accountable in terms of a linear combination of demographic, personality, and climate factors. We concluded that an expanded theoretical perspective (utilizing demographic, personality, and climate variables) explained more variance than might otherwise be expected from any single perspective. Indeed, climate, personality, and demographic variables operated legitimately at the departmental level. Finally, we explained aggregated personality as a form of social interaction which is the by-product of individual differences.
Resumo:
This study aims to analyse the relationship between safety climate and the level of risk acceptance, as well as its relationship with workplace safety performance. The sample includes 14 companies and 403 workers. The safety climate assessment was performed by the application of a Safety Climate in Wood Industries questionnaire and safety performance was assessed with a checklist. Judgements about risk acceptance were measured through questionnaires together with four other variables: trust, risk perception, benefit perception and emotion. Safety climate was found to be correlated with workgroup safety performance, and it also plays an important role in workers’ risk acceptance levels. Risk acceptance tends to be lower when safety climate scores of workgroups are high, and subsequently, their safety performance is better. These findings seem to be relevant, as they provide Occupational, Safety and Health practitioners with a better understanding of workers’ risk acceptance levels and of the differences among workgroups.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
This study aims to analyse the relationship between safety climate and the level of risk acceptance, as well as its relationship with workplace safety performance. The sample includes 14 companies and 403 workers. The safety climate assessment was performed by the application of a Safety Climate in Wood Industries questionnaire and safety performance was assessed with a checklist. Judgements about risk acceptance were measured through questionnaires together with four other variables: trust, risk perception, benefit perception and emotion. Safety climate was found to be correlated with workgroup safety performance, and it also plays an important role in workers’ risk acceptance levels. Risk acceptance tends to be lower when safety climate scores of workgroups are high, and subsequently, their safety performance is better. These findings seem to be relevant, as they provide Occupational, Safety and Health practitioners with a better understanding of workers’ risk acceptance levels and of the differences among workgroups.
Resumo:
The Rufous Hornero (Furnarius rufus) is one of the most common bird species in Brazil. Anecdotal information indicates that nest opening orientation in this species is contrary to wind or rainfall direction. To check for the existence of such a pattern, F. rufus nests were randomly sampled within an urban area in central Brazil to assess whether factors such as wind and vegetation cover influence nest opening orientation. Using circular statistics, no evidence was found that nest-opening orientation was important for the species. These results refuse the expected pattern for tree hollow or enclosed nests. The results suggest that factors such as nesting architecture, nest material, nest microclimate or a combination of these, instead of local climate, must be conditioning nesting behavior in this species.
Resumo:
ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.
Resumo:
Aim To explore the respective power of climate and topography to predict the distribution of reptiles in Switzerland, hence at a mesoscale level. A more detailed knowledge of these relationships, in combination with maps of the potential distribution derived from the models, is a valuable contribution to the design of conservation strategies. Location All of Switzerland. Methods Generalized linear models are used to derive predictive habitat distribution models from eco-geographical predictors in a geographical information system, using species data from a field survey conducted between 1980 and 1999. Results The maximum amount of deviance explained by climatic models is 65%, and 50% by topographical models. Low values were obtained with both sets of predictors for three species that are widely distributed in all parts of the country (Anguis fragilis , Coronella austriaca , and Natrix natrix), a result that suggests that including other important predictors, such as resources, should improve the models in further studies. With respect to topographical predictors, low values were also obtained for two species where we anticipated a strong response to aspect and slope, Podarcis muralis and Vipera aspis . Main conclusions Overall, both models and maps derived from climatic predictors more closely match the actual reptile distributions than those based on topography. These results suggest that the distributional limits of reptile species with a restricted range in Switzerland are largely set by climatic, predominantly temperature-related, factors.
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
Early Cretaceous life and the environment were strongly influenced by the accelerated break up of Pangaea, which was associated with the formation of a multitude of rift basins, intensified spreading, and important volcanic activity on land and in the sea. These processes likely interacted with greenhouse conditions, and Early Cretaceous climate oscillated between "normal" greenhouse, predominantly arid conditions, and intensified greenhouse, predominantly humid conditions. Arid conditions were important during the latest Jurassic and early Berriasian, the late Barremian, and partly also during the late Aptian. Humid conditions were particularly intense and widespread during shorter episodes of environmental change (EECs): the Valanginian Weissert, the latest Hauterivian Faraoni, the latest Barremian earliest Aptian Taxy, the early Aptian Selli, the early late Aptian Fallot and the late Aptian-early Albian Paquier episodes. Arid conditions were associated with evaporation, low biogeochemical weathering rates, low nutrient fluxes, and partly stratified oceans, leading to oxygen depletion and enhanced preservation of laminated, organic-rich mud (LOM). Humid conditions enabled elevated biogeochemical weathering rates and nutrient fluxes, important runoff and the buildup of freshwater lids in proximal basins, intensified oceanic and atmospheric circulation, widespread upwelling and phosphogenesis, important primary productivity and enhanced preservation of LOM in expanded oxygen-minimum zones. The transition of arid to humid climates may have been associated with the net transfer of water to the continent owing to the infill of dried-out groundwater reservoirs in internally drained inland basins. This resulted in shorter-term sea-level fall, which was followed by sea-level rise. These sea-level changes and the influx of freshwater into the ocean may have influenced oxygen-isotope signatures. Climate change preceding and during the Early Cretaceous EECs may have been rapid, but in general, the EECs had a "pre"-history, during which the stage was set for environmental change. Negative feedback on the climate through increased marine LOM preservation was unlikely, because of the low overall organic-carbon accumulation rates during these episodes. Life and climate co-evolved during the Early Cretaceous. Arid conditions may have affected continental life, such as across the Tithonian/Berriasian boundary. Humid conditions and the corresponding tendency to develop dys- to anaerobic conditions in deeper ocean waters led to phases of accelerated extinction in oceans, but may have led to more luxuriant vegetation cover on continents, such as during the Valanginian, to the benefit of herbivores. During Early Cretaceous EECs, reef systems and carbonate platforms in general were particularly vulnerable. They were the first to disappear and the last to recover, often only after several million years. (C) 2011 Elsevier Ltd. All rights reserved.