883 resultados para 769999 Other Environmental aspects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated the microbial air quality of flooded houses in Brisbane suburbs following the January 2011 flood event. Flood waters can carry and spread human pathogenic bacteria, and these organisms can be dispersed into residential air by aerosolisation. This study found that the bacterial load was significantly different for indoor and outdoor areas of flood affected houses, but no significant differences were observed between flooded and non-flooded houses. This could be due to the rapid clean-up of flooded houses following the event. Molecular methods were used to identify and characterise staphylococcal species in residential air of flooded and non-flooded houses. A major finding was the diverse population of airborne staphylococci as well as the high rate of methicillin-resistance in these strains. By determining the genetic relatedness of residential air sourced staphylococci, a potential source for pathogenic strains can be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An underground work (such as a tunnel or a cavern) has many, well known, environmental qualities such as: no physical barriers crossing the land, less maintenance costs than an analogous surface structure, less expenses for heating and conditioning; a localized emission of noise, gas, dust during operation and, finally, a better protection against seismic actions.
It cannot be forgotten, anyway, that some negative environmental features are present such as, for example, : perturbation, pollution and drainage of the groundwater; settlements; disposal of waste rock.
In the paper the above mentioned concepts are discussed and analysed to give a global overview of all this aspects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental consequences of global climate change are predicted to have their greatest effect at high latitudes and have great potential to impact fragile tundra ecosystems. The Arctic tundra is a vast biodiversity resource and provides breeding areas for many migratory geese. Importantly, tundra ecosystems also currently act as a global carbon “sink”, buffering carbon emissions from human activities. In January 2003, a new three year project was implemented to understand and model the interrelationships between goose population dynamics, conservation, European land use/agriculture and climate change. A range of potential future climate and land-use scenarios will be applied to the models and combined with information from field experiments on grazing and climate change in the Arctic. This paper describes the content of the research programme as well as issues in relation to engaging stakeholders with the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goat fibre production is affected by genetic and environmental influences. Environmental influences which are the subject of this review include bio–geophysical factors (photoperiod, climate–herbage system and soil–plant trace nutrient composition), nutrition factors and management factors. Nutrition and management influences discussed include rate of stocking, supplementary feeding of energy and protein, liveweight change, parturition and management during shearing. While experimental data suggest affects of seasonal photoperiod on the growth of mohair and cashmere are large, these results may have confounded changes in temperature with photoperiod. The nutritional variation within and among years is the most important climatic factor influencing mohair and cashmere production and quality. Mohair quality and growth is affected significantly by rate of stocking and during periods of liveweight loss by supplementary feeding of either energy or protein. Strategic use of supplements, methods for rapid introduction of cereal grains, influence of dietary roughage on intake and the economics of supplementary feeding are discussed. Cashmere production of young, low producing goats does not appear to be affected by energy supplementation, but large responses to energy supplementation have been measured in more productive cashmere goat strains. The designs of these cashmere nutrition experiments are reviewed. Evidence for the hypothesis that energy-deprived cashmere goats divert nutrients preferentially to cashmere growth is reviewed. The influence and potential use of liveweight manipulation in affecting mohair and cashmere production and quality are described. Estimates of the energy requirements for the maintenance of fibre goats and the effect of pregnancy and lactation on mohair and cashmere growth are summarised. The effects and importance of management and hygiene during fibre harvesting (shearing) in producing quality fibre is emphasised. The review concludes that it is important to assess the results of scientific experiments for the total environmental content within which they were conducted. The review supports the view that scientific experiments should use control treatments appropriate to the environment under study as well as having controls relevant for other environments. In mediterranean and annual temperate environments, appropriate controls are liveweight loss and liveweight maintenance treatments. Mohair producers must graze goats at moderate rates of stocking to maximise animal welfare, but in so doing, they will produce heavier goats and coarser mohair. In mediterranean and annual temperate environments, seasonal changes in liveweight are large and influence both quality and production of mohair and cashmere. Mohair and cashmere producers can manipulate liveweight by supplementary feeding energy during dry seasons to minimise liveweight loss, but the economics of such feeding needs to be carefully examined. Strategic benefits can be obtained by enhancing the growth of young does prior to mating and for higher producing cashmere goats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.