995 resultados para 70-507F


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interaction between young basaltic crust and seawater near the oceanic speading centers is one of the important processes affecting the chemical composition of the oceanic layer. The formation of metalliferous hydrothermal sediments results from this interaction. The importance of the interaction between seawater and basalt in determining the chemical composition of pore waters from sediments is well known. The influence of mineral solutions derived from this interaction on ocean water composition and the significant flux of some elements (e.g., Mn) are reported by Lyle (1976), Bogdanov et al. (1979), and others. Metal-rich sediments found in active zones of the ocean basins illustrate the influence of seawater-basalt interaction and its effect on the sedimentary cover in such areas. The role of hydrothermal activity and seawater circulation in basalts with regard to global geochemistry cycles has recently been demonstrated by Edmond, Measures, McDuff, McDuff et al. (1979), and Edmond, Measures, Mangum (1979). In the area of the Galapagos Spreading Center the interaction of sediments and solutions derived from interaction of seawater and basalt has resulted in the formation of hydrothermal mounds. The mounds are composed of manganese crusts and green clay interbedded and mixed with pelagic nannofossil ooze. These mounds are observed only in areas characterized by high heat flow (Honnorez, et al., 1981) and high hydrothermal activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A total of 32 holes at five sites near 1°N, 86°W drilled on Deep Sea Drilling Project (DSDP) Leg 70 (November- December 1979) provide unique data on the origin of the hydrothermal mounds on the southern flank of the Galapagos Spreading Center. Hydrothermal sediments, primarily Mn-oxide and nontronite, are restricted to the immediate vicinity of the mounds (< 100 m) and are probably formed by the interaction of upward-percolating hydrothermal solutions with seawater and pelagic sediments above locally permeable zones of ocean crust. Mounds as high as 25 meters form in less than a few hundred thousand years, and geothermal and geochemical gradients indicate that they are actively forming today. The lack of alteration of upper basement rocks directly below the mounds and throughout the Galapagos region indicates that the source of the hydrothermal solutions is deeper in the crust.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data obtained while investigating the mounds area near the Galapagos Spreading Center demonstrate the direct influence of solutions derived from the interaction of seawater and young oceanic crust on the sedimentary cover. Investigation of metalliferous sediments from the mid-oceanic ridges, the Galapagos mounds, and the FAMOUS-area zone formations have shown that this influence and the resulting products are dependent on composition, temperature, and conditions of solution input. The study of sulfur in upwardly migrating solutions and the interaction of these solutions with sediments is of great interest. Investigations of different types of hydrothermally derived formations (Edmond, et al., 1979; Spiess et al., 1980; Styrt et al., 1981; Rosanova 1976; Grinenko et al., 1978) have shown the significant role of sulfur-bearing minerals in deposits formed from hightemperature solutions. In contrast, the addition of hydrothermal sulfur is negligible in those metalliferous sediments that precipitated as a result of the interaction between the solutions and open seawater (Bonatti et al., 1972, 1976; Gordeev et al., 1979; Migdisov, Bogdanov, et al., 1979). For example, sulfides are absent in clearly oxidized metalliferous sediments from the East Pacific Rise (EPR). Barite sulfur from these sediments is identical with seawater sulfate sulfur in isotope composition (Grinenko et al., 1978). Gurvich and Bogdanov (1977) have suggested that barium from EPR metalliferous sediments results completely from biological activity and from the components of ocean waters. Edmond et al. (1979) report that low-temperature springs from the Galapagos Rift axis contain two types of solutions: those with and those without H2S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Geological and geophysical data collected during Deep Sea Drilling Project (DSDP) Leg 70 indicate that hydrothermal solutions are upwelling through the sediments of the mounds hydrothermal field (Sites 506, 507, and 509) and downwelling in the low heat-flow zone to the south (Site 508). Pore-water data are compatible with these conclusions. Pore waters at mounds sites are enriched in Ca and depleted in Mg relative to both seawater and Site 508 pore waters. These anomalies are believed to reflect prior reaction of the interstitial waters with basement rocks. The mounds solutions are also enriched in iron, which is probably hydrothermal and en route to forming nontronite. Concentrations of Si and NH3 in mounds pore water increase upcore as a result of the addition of dissolving biogenic debris to ascending hydrothermal solutions. Some low heat-flow pore-water samples (Site 508) are enriched in Ca and depleted in Mg. These anomalies likely reflect the presence of pockets of hydrothermal solutions in areas otherwise dominated by downwelling bottom water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, metalliferous sediments have been discovered overlying newly generated oceanic crust in the East Pacific, North Atlantic, Indian Ocean, Red Sea, Gulf of Aden, and elsewhere (e.g., Boström, 1973; Lalou et al., 1977; Bischoff, 1969; Boström and Fisher, 1971; Cann et al., 1977, respectively). Such material has also been recovered by drilling from sediments lying upon older oceanic crust (Boström et al., 1972, 1976; Horowitz and Cronan, 1976). Hydrothermal circulation of seawater at a spreading ridge results in the leaching of Fe, Mn, and possibly other elements from the basaltic volcanic layer and their transport and discharge into ocean bottom waters, whereupon fine-grained Fe-Mn-rich precipitates form and settle into the ambient sediment (cf. Corliss, 1971; Dasch et al., 1971; Spooner and Fyfe, 1973; Bischoff and Dickson, 1975; Heath and Dymond, 1977; Corliss et al., 1979, Edmond et al., 1979). Mn-rich crusts have also been recovered from active ridges and are inferred to have formed in the vicinity of hydrothermal discharge areas (Scott et al., 1974; Moore and Vogt, 1976; Corliss et al., 1978; Hoffert et al., 1978). The source of the trace elements in the metalliferous deposits is generally not clear. They may be derived from seawater by adsorption onto the precipitates or crusts, or from hydrothermal solutions which have leached them from the basalts. Pb, however, can be used as a geochemical tracer because of the known isotopic compositional differences between oceanic basalts and seawater. Isotopic investigations of Pb in ferruginous sediments from the East Pacific have shown that it has been derived partly or mostly from a basaltic source (Bender et al., 1971; Dasch et al., 1971; Dymond et al., 1973). In the present study, Pb isotopic analyses have been made of a suite of metalliferous sediments (nontronite, Mn-oxide crust, Mn-Fe-oxide mud), pelagic sediments, and basalts from the Galapagos mounds area. The main purposes of the Pb study were to determine the source or sources of Pb in the metalliferous sediments, and whether or not stratigraphic variations exist in the isòtopic composition of Pb in the sediments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hydrothermal deposits that we analyzed from Leg 70 are composed of ferruginous green clays and fragments of manganese-hydroxide crust. Data from X-ray diffraction, IR-spectroscopy, electron diffraction, and chemical analyses indicate that the hydrothermal green clays are composed of disordered mixed-layer phases of celadonite-nontronite. Electron diffraction shows that the parameters of the unit cells and the degree of three-dimensional ordering of mixed-layer phases with 80% celadonite interlayers are very close to Fe-micas of polymorphic modification IM-celadonite. In some sections, there is a tendency for the number of celadonite layers to increase with depth. The manganese-hydroxide crust fragments are predominantly composed of todorokite (buserite). An essential feature of hydrothermal accumulation is the sharp separation of Fe and Mn. Ba/Ti and Ba/Sr ratios are typical indicators of hydrothermal deposits. Sediments composing the hydrothermal mounds were deposited from moderately heated waters, which had extracted the components from solid basalts in environments where there were considerable gradients of temperature, eH, and pH. The main masses of Fe and Mn were deposited in the late Pleistocene. Postsedimentary alteration of deposited hydrothermal sediments led to their slight recrystallization and, in the green clays, to celadonitization. Further, factor analysis (by Varentsov) of chemical components from these hydrothermal deposits revealed paragenetic assemblages. Green clays corresponding to a definite factor assemblage were formed during the main stage of hydrothermal mineral formation. Manganese hydroxide and associated components were largely accumulated during an early stage and at the end of the main stage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ashes occurring both as distinct layers and mixed with pelagic sediments of the hydrothermal mounds lying south of the Galapagos Rift are mainly rhyolitic and basaltic. The ashes, of rhyolitic to intermediate composition, appear to belong to a calc-alkalic series and were probably derived from Plinian eruptions in Ecuador or Colombia. Basaltic ashes are made of nonvesicular sideromelane spalling shards and are of tholeiitic composition. They probably were derived locally from fault scarps. Most rhyolitic and basaltic glass shards studied are fresh except for hydration of the rhyolitic shards. Some shards are severely altered, however. Basaltic ash may be more common in pelagic sediments deposited near accretion zones and may be a source of silica and other elements released during diagenesis