1000 resultados para 7-NITROINDAZOLE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: The aim of this study was to determine the presence of the neuronal nitric oxide synthase (nNOS) in near full-term lambs with congenital diaphragmatic hernia (CDH) and its role in the modulation of pulmonary vascular basal tone. METHODS: We surgically created diaphragmatic hernia on the 85th day of gestation. On the 135th, catheters were used to measure pulmonary pressure and blood flow. We tested the effects of 7-nitroindazole (7-NINA), a specific nNOS antagonist and of N-nitro-L-arginine (L-NNA), a nonspecific nitric oxide synthase antagonist. In vitro, we tested the effects of the same drugs on isolated pulmonary vessels. The presence of nNOS protein in the lungs was detected by Western blot analysis. RESULTS: Neither 7-NINA nor L-NNA modified pulmonary vascular basal tone in vivo. After L-NNA injection, acetylcholine (ACh) did not decrease significantly pulmonary vascular resistance (PVR). In vitro, L-NNA increased the cholinergic contractile-response elicited by electric field stimulation (EFS) of vascular rings from lambs with diaphragmatic hernia. CONCLUSION: We conclude that nNOS protein is present in the lungs and pulmonary artery of near full-term lamb fetuses with diaphragmatic hernia, but that it does not contribute to the reduction of pulmonary vascular tone at birth

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been demonstrated that nitric oxide (NO) has a thermoregulatory action, but very little is known about the mechanisms involved. In the present study we determined the effect of neuronal nitric oxide synthase (nNOS) inhibition on thermoregulation. We used 7-nitroindazole (7-NI, 1, 10 and 30 mg/kg body weight), a selective nNOS inhibitor, injected intraperitoneally into normothermic Wistar rats (200-250 g) and rats with fever induced by lipopolysaccharide (LPS) (100 µg/kg body weight) administration. It has been demonstrated that the effects of 30 mg/kg of 7-NI given intraperitoneally may inhibit 60% of nNOS activity in rats. In all experiments the colonic temperature of awake unrestrained rats was measured over a period of 5 h at 15-min intervals after intraperitoneal injection of 7-NI. We observed that the injection of 30 mg/kg of 7-NI induced a 1.5oC drop in body temperature, which was statistically significant 1 h after injection (P<0.02). The coinjection of LPS and 7-NI was followed by a significant (P<0.02) hypothermia about 0.5oC below baseline. These findings show that an nNOS isoform is required for thermoregulation and participates in the production of fever in rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F1α (6-keto-PGF1α; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM22-52, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K+ channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin (Ca2+-activated channel blocker) did not affect AM-induced relaxation. AM increased nitrate levels and 6-keto-PGF1α in rat CSM. The major new contribution of this research is that it demonstrated expression of AM and its receptor in rat CSM. Moreover, we provided evidence that AM-induced relaxation in this tissue is mediated by AM receptors by a mechanism that involves the nitric oxide-cGMP pathway, a vasodilator prostanoid, and the opening of voltage-dependent K+ channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to investigate a putative role for nitric oxide (NO) in the central nociceptive processing following carrageenan-induced arthritis in the rat temporomandibular joint (TMJ), we analyzed the immunoreactivity, gene expression and activity of nitric oxide synthases (NOS) in the caudal part of the spinal trigeminal nucleus (Sp5C) during the acute (24 h), chronic (15 days) and chronic-active (14 days-24 h) arthritis. In addition, evaluation of head-withdrawal threshold was carried out in all phases of arthritis under chronic inhibition of nNOS with the selective inhibitor 7-nitroindazole (7-NI). Neurons with nNOS-like immunoreactivity (nNOS-LI) were concentrated mainly in the lamina II of the Sp5C, showing no significant statistical difference during arthritis. Only a discrete percentage of nNOS-LI neurons expressed Fos immunoreactivity. The mRNA expression for both nNOS and endothelial nitric oxide synthases (eNOS) presented no noticeable differences among the groups. No expression of inducible nitric oxide synthase (iNOS) was detected in the Sp5C by either immunohistochemistry or reverse-transcription polymerase chain reaction (RTPCR). Ca(2+)-dependent NOS activity in the ipsilateral Sp5C was significantly higher (108.3 +/- 49.2%; P<0.01) in animals during the chronic arthritis. Interestingly, this increased activity was completely abolished 24 h later, in the chronic-active arthritis. Finally, head-withdrawal threshold decreased significantly in the chronic arthritis in animals under 7-NI chronic inhibition. In conclusion, nNOS immunoreactivity and mRNA expression are stable in the Sp5C during TMJ arthritis evolution, but its activity significantly increases in the chronic-phases supporting an antinociceptive role of the nNOS as evidenced by pain threshold experiment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to investigate a putative role for nitric oxide (NO) in the central nociceptive processing following carrageenan-induced arthritis in the rat temporomandibular joint (TMJ), we analyzed the immunoreactivity, gene expression and activity of nitric oxide synthases (NOS) in the caudal part of the spinal trigeminal nucleus (Sp5C) during the acute (24 h), chronic (15 days) and chronic-active (14 days-24 h) arthritis. In addition, evaluation of head-withdrawal threshold was carried out in all phases of arthritis under chronic inhibition of nNOS with the selective inhibitor 7-nitroindazole (7-NI). Neurons with nNOS-like immunoreactivity (nNOS-LI) were concentrated mainly in the lamina II of the Sp5C, showing no significant statistical difference during arthritis. Only a discrete percentage of nNOS-LI neurons expressed Fos immunoreactivity. The mRNA expression for both nNOS and endothelial nitric oxide synthases (eNOS) presented no noticeable differences among the groups. No expression of inducible nitric oxide synthase (iNOS) was detected in the Sp5C by either immunohistochemistry or reverse-transcription polymerase chain reaction (RTPCR). Ca(2+)-dependent NOS activity in the ipsilateral Sp5C was significantly higher (108.3 +/- 49.2%; P<0.01) in animals during the chronic arthritis. Interestingly, this increased activity was completely abolished 24 h later, in the chronic-active arthritis. Finally, head-withdrawal threshold decreased significantly in the chronic arthritis in animals under 7-NI chronic inhibition. In conclusion, nNOS immunoreactivity and mRNA expression are stable in the Sp5C during TMJ arthritis evolution, but its activity significantly increases in the chronic-phases supporting an antinociceptive role of the nNOS as evidenced by pain threshold experiment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circumventricular structures of the central nervous system and nitric oxide are involved in arterial blood pressure control, and general anesthesia may stimulate the central renin-angiotensin system. We therefore investigated the central role of angiotensin 11 and nitric oxide on the regulation of systemic arterial blood pressure in conscious and anesthetized rats. METHODS: Rats with stainless steel cannulae implanted into their lateral ventricle were studied. We injected the AT(1) and AT(2) angiotensin 11 receptor antagonists, losartan and PD123319, L-NAME, 7-nitroindazole (nitric oxide synthetase inhibitors), and FK409 (nitric oxide donor agent) into the lateral ventricles. Mean arterial blood pressure (MAP) was recorded in conscious and zoletil-anesthetized rats. RESULTS: Mean +/- (SEM) baseline MAP was 117.5 +/- 2 mm Hg. Angiotensin II injected into the brain lateral ventricle increased MAP from 136.5 +/- 2 min Hg to 138.5 +/- 4 mm Hg (Delta 16 +/- 3 mm Hg to Delta 21 +/- 3 mm Hg) for all experimental groups versus control from 116 +/- 2 mm Hg to 120 +/- 3 mm Hg (Delta 3 +/- 1 mm Hg to A5 +/- 2 mm Hg) (P < 0.05). L-NAME or 7-nitroindazole enhanced the angiotensin II pressor effect (P < 0.05). Prior injection of losartan and PD123319 decreased the angiotensin 11 pressor effect and the enhancement effect of L-NAME and 7-nitroindazole (P < 0.05). Zoletil anesthesia did not interfere with the effects of angiotensin 11, AT,, AT2 antagonists, or nitric oxide synthetase inhibitors. CONCLUSIONS: Endogenous nitric oxide functions tonically as a central inhibitory modulator of the angiotensinergic system. AT, and AT2 receptors influence the angiotensin 11 central control of arterial blood pressure. Zoletil anesthesia did not interfere with these effects. (Anesth Analg 2007;105:1293-7)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigated the central role of angiotensin II and nitric oxide on arterial blood pressure (MAP) in rats. Losartan and PD123349 AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), as well as FK 409 (a nitric oxide donor), N W-nitro-L-arginine methyl ester (L-NAME) a constituve nitric oxide synthase inhibitor endothelial (eNOSI) and 7-nitroindazol (7NI) a specific neuronal nitric oxide synthase inhibitor (nNOSI) were used. Holtzman strain, (Rattus norvergicus) weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125 mg and zolazepan chloridrate 125 mg) into quadriceps muscle anda stainless steel cannula was stereotaxically implanted into their Lateral Ventricle (LV). Controls were injected with a 0.5 μl volume of 0.15 M NaCl. Angiotensin II injected into LV increased MAP (19±3 vs. control 3±1 mm Hg), which is potentiated by prior injection of L-NAME in the same site 26±2 mm Hg. 7NI injected prior to ANG II into LV also potentiated the pressor effect of ANG II but with a higher intensity than L-NAME 32±3 mm Hg. FK 409 inhibited the pressor effect of ANG II (6±1 mm Hg). Losartan injected into LV before ANG II influences the pressor effect of ANG II (8±1 mm Hg). The PD 123319 decreased the pressor effects of ANG II (16±1 mm Hg). Losartan injected simultaneously with FK 409 blocked the pressor effect of ANG II (3±1 mm Hg). L-NAME produced an increase in the pressor effect of ANG II, may be due to local vasoconstriction and all at once by neuronal NOS inhibition but the main effect is of the 7-NIT an specific nNOS inhibitor. The AT 1 antagonist receptors improve basal nitric oxide (NO) production and release. These data suggest the involvement of constitutive and neuronal NOS in the control of arterial blood pressure induced by ANG II centrally, evolving AT 1 receptor-mediated vasoconstriction and AT 2 receptor-mediated vasodilatation. These results were confirmed by the experiment using FK 409. © 2006 Asian Network for Scientific Information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to examine the role of nifedipine and Nitric Oxide (NO) on salivary flow and compounds (salivary amylase, saliva total proteins, saliva calcium, sodium and potassium). Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their lateral ventricle of the brain (LV). Animals in divided group were injected with nifedipine (50 μg μL -1) alone and in combination with 7-nitroindazol (7-NIT) (40 μg μL -1), neuronal NO Sinthase Inhibitor (nNOSI) and Sodium Nitroprussate (SNP) (30 μg μL -1) NO donor agent. As a secretory stimuli, pilocarpine dissolved in isotonic was administered intraperitoneally (ip) at a dosage of 10 mg kg -1 body weight. Saliva was collected for 7 min with four cotton balls weighing approximately 20 mg each, two of which were placed on either side of the oral cavity, with the other two placed under the tongue. Nifedipine treatment induced a reduction in saliva secretion rate and concentration of amylase, total protein and calcium without changes in sodium and potassium concentration in comparison with controls. Co-treatment of animals with nifedipine and SNP retained flow rate and concentration of amylase, total protein and calcium in normal levels. Co-treatment of animals with nifedipine and 7-NIT potentiated the effect of nifedipine on the reduction of saliva secretion and concentrations of amylase, total protein and calcium. Nifedipine (dihydroperidine) calcium-channel blocker widely in use is associated with salivary dysfunction acting in the central nervous system structures. NO might be the mechanism for protective effect against the nifedipine-induce salivary dysfunction, acting in the CNS. © 2006 Asian Network for Scientific Information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The median preoptic nucleus (MnPO) is one of most important site of the lamina terminalis implicated in the regulation of hydro electrolytic and cardiovascular balance. The purpose of this study was to determine the effect of L-Type calcium channel antagonist, nifedipine, on the increase of median arterial blood pressure (MAP) induce by angiotensin II (ANG II) injected into the MnPO. The influence of nitric oxide (NO) on nifedipine antipressor action has also been studied by utilizing N W-nitro-L-arginine methyl ester (L-NAME) (40 μg 0.2 μL -1) a NO synthase inhibitor (NOSI), 7-nitroindazole (7-NIT) (40 μg 0.2 μL -1), a specific neuronal NO synthase inhibitor (nNOSI) and sodium nitroprusside (SNP) (20 μg 0.2 μL -1) a NO donor agent. We have also investigated the central role of losartan and PD123349 (20 nmol 0.2 μL -1), AT 1 and AT 2, respectively (selective non peptide ANG II receptor antagonists), in the pressor effect of ANG II (25 pmol 0.2 μL -1) injected into the MnPO. Male Wistar rats weighting 200-250 g, with cannulae implanted into the MnPO were utilized. Losartan injected into the MnPO, prior to ANG II, blocked the pressor effect of ANGII. PD 123319 only decreased the pressor effect of ANG II. Rats pre-treated with either 50 μg 0.2 μL -1 or 100 μg 0.2 μL -1 of nifedipine, followed by 25 pmol 0.2 μL -1 of ANG II, decreased ANG II-pressor effect. L-NAME potentiated the pressor effect of ANG II. 7-NIT injected prior to ANG II into the MnPO also potentiated the pressor effect of ANGII but with less intensity than that of L-NAME. SNP injected prior to ANG II blocked the pressor effect of ANG II. The potentiation action of L-NAME and 7-NIT on ANG II-pressor effect was blocked by prior injection of nifedipine. The results described in this study provide evidence that calcium channels play important roles in central ANG II-induced pressor effect. The structures containing NO in the brain, such as MnPO, include both endothelial and neuronal cells, which might be responsible for the influence of nifedipine on the pressor effect of ANG II. These data have shown the functional relationship between L-Type calcium channel and a free radical gas NO in the MnPO, on the control of ANG II-induced pressor effect acting in AT 1 and AT 2 receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)