949 resultados para 56-434
Resumo:
C1-C5 hydrocarbons from DSDP Legs 56 and 57 sediment gas pockets were analyzed on board ship. Results suggest that the C2-C5 hydrocarbons accompanied biogenic methane and were generated at low temperatures - less than 50° C - either by microorganisms or by low-temperature chemical reactions. Neopentane, a rare constituent of petroleum, is the major C5 component (about 80%) in much of the sediment at Site 438. This compound, which appeared in smaller amounts at Sites 434, 439, 440, and 441, seems to correlate with either fractured or coarse-grained sediments. Scatter in C4 and C5 isomer ratios and generally good correlation between C3, C4 and C5 components suggest local sources for these molecules.
Resumo:
At all DSDP Leg 56 drilling sites, exotic pebbles occur commonly, throughout the cores. Chips of carbonate nodules occur only at Site 434 on the lower inner trench wall. Both exotic pebbles and carbonate nodule chips sometimes tend to be concentrated at particular levels of cores. Exotic pebbles are generally well rounded and consist of various rock types, such as dacite, andesite, basalt, tuff, gabbro, granodiorite, metaquartzite, biotite hornfels, lithic wacke, mudstone, etc., of which dacite occurs commonly at all the sites. Almost all pebbles at Site 436 and most at Sites 434 and 435 may have been rafted by ice. Some at the latter sites may have been derived by down-slope slumping. Carbonate nodules consist of microcrystalline dolomite, manganoan calcite, and siderite; CaCO3 content ranges from 22 to 65 per cent. They are also generally characterized by a high content of P2O5. The nodules are commonly rich in diatom remains, some of which indicate that the nodules are autochthonous. Some nodules contain abundant glass shards, with a modal refractive index of 1.499, almost identical to shards in the surrounding mud and ooze. These facts suggest that the carbonate nodules may have been formed diagenetically, in situ. This may throw light on problems of the formation of carbonate nodules in ancient "geosynclinal" sediments. It is also very important to point out that these carbonate nodules were formed within sediment deposited well below the CCD.
Resumo:
A geological model of subduction postulated by Karig, Ingle, et al. (1975) and Karig and Sharman (1975) proposes that the sedimentary prism at the foot of the landward wall is being actively built as sediment is scraped off the subducting oceanic and plastered onto the base of the wedge, forming an accretionary wedge containing overthrust sedimentary layers or intense sedimentary folding. Because overlying layers must continually be uplifted and compressed to accommodate new matter at the base, the accreting wedge will provide a geochemical record of this process at or near the Japan Trench. Several recent papers have discussed the metalliferous sediments on the active oceanic ridges. The geochemistry of such sediments is now reasonably well known: generally these deposits are considered products of volcanic processes (Boström and Peterson, 1969; Böstrom et al., 1969; Horowitz, 1970, 1974; Cronan et al., 1972; Cronan and Garrett, 1973). The geochemistry of subduction zone sediments, however, is less well known, and the need for studies of these sediments is particularly urgent if such sediments provide a record of the effects of subduction of oceanic plates under continental crust. Because the Japan Trench contains welldeveloped subduction zone deposits, Leg 56 sampling was of utmost importance to the discovery of how they originate.
Resumo:
Volatile C1-C7 components in sediments were examined for Japan Trench DSDP Sites 438, 439, 435, 440, 434 and 436, proceeding from west to east. Levels of all components are lowest in the highly fractured sediments of Sites 440 and 434. A number of alkenes, furans, and sulfur compounds were detected in concentrations higher than noted in any other DSDP sediments examined to date. The types, amounts, and specificity of occurrence are similar to those for 1-meter gravity cores we have examined which bear a significant biological imprint. Site 436 shows high levels of saturated and aromatic hydrocarbons, as well as olefins, including traces of dimethycyclopentanes and the highest level of cyclohexene detected in any DSDP sediment we have examined to date. The results from Site 436 were unexpected, considering the low organic-carbon content, absence of biogenic methane, and evidence of an aerobic depositional environment at this site.
Resumo:
As part of a continuing program of organic-geochemistry studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal-alteration indices of organic matter in samples collected from the landward wall of the Japan Trench on Legs 56 and 57. The samples were canned aboard ship, enabling us to measure also their gas contents. In addition, we analyzed the heavy C15+ hydrocarbons, NSO compounds, and asphaltenes extracted from selected samples. Our samples form a transect down the trench wall, from Holes 438 and 438A (water depth 1558 m), through Holes 435 and 435A (water depth 3401 m), and 440 (water depth 4507 m), to Holes 434 and 434B (water depth 5986 m). The trench wall is the continental slope of Japan. Its sediments are Cenozoic hemipelagic diatomaceous muds that were deposited where they are found or have slumped from farther up the slope. Their terrigenous components probably were deposited from near-bottom nepheloid layers transported by bottom currents or in low density flows (Arthur et al., 1978). Our objective was to find out what types of organic matter exist in the sediment and to estimate their potential for generation of hydrocarbons.
Resumo:
Forty-three core sections from Sites 434, 435, 438, 439, and 440 on the landward side and six core sections from Site 436 on the seaward side of the Japan Trench were obtained through the JOIDES Organic Geochemistry Advisory Panel for study of the origin and state of genesis of the organic matter associated with these continental slope, accretionary wedge, and outer trench slope sediments of the Japan Trench. The lipid fraction of these sediments is derived primarily from terrigenous organic matter and thus is allochthonous to the area. The associated kerogen fraction is of mixed allochthonous and autochthonous origin. The total organic carbon content seaward of the trench is less than that on the landward side. The composition of this organic matter is similar but not identical to that found in the landward side sediments. The organic matter within these sediments is in a diagenetic state in which geopolymerization of biogenic organic matter is nearly complete, but microbial alteration is still occurring.