983 resultados para 506
Resumo:
Fil: Panesi, Jorge. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Fil: Panesi, Jorge. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Dissolution rates of calcareous ooze were measured for samples from Deep Sea Drilling Project (DSDP) Site 506, which is in the area of the Galapagos Spreading Center. Using the free-drift method, measurements were carried out at 25 °C and atmospheric pressure. No significant difference in dissolution rates was found among the samples from three holes. However, in the present samples, the concentration of carbonate ion in seawater that is in equilibrium with calcite is 20 to 30% greater than is the case with synthetic calcite. That is, the dissolution rate of calcite under nearequilibrium conditions is greater than that of either synthetic calcite or sediments from the central Pacific (Morse, 1978). These results are consistent with field evidence indicating that the calcium carbonate compensation depth in the Galapagos region is shallower than in most other Pacific regions (Berger et al., 1976).
Resumo:
Sediments in the area of the Galapagos hydrothermal mounds are divided into two major categories. The first group, pelagic sediments, are nannofossil oozes with varying amounts of siliceous microfossils. The second group are hydrothermal sediments consisting of manganese-oxide crust fragments and green nontronitic clay granules. Hydrothermal sediments occur only in the upper half to two-thirds of the cores and are interbedded and mixed with pelagic sediments. Petrologic evidence indicates that hydrothermal nontronite forms as both a primary precipitate and as a replacement mineral of pre-existing pelagic sediment and hydrothermal manganese-oxide crust fragments. In addition, physical evidence supports chemical equations indicating that the pelagic sediments are being dissolved by hydrothermal solutions. The formation of hydrothermal nontronite is not merely confined to the surface of mounds, but also occurs at depth within their immediate area; hydrothermal nontronite is very likely forming today. Geologically speaking, the mounds and their hydrothermal sediments form almost instantaneously. The Galapagos mounds area is a unique one in the ocean basins, where pelagic sediments can be diagenetically transformed, dissolved, and replaced, possibly within a matter of years.