983 resultados para 5-HT2A receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amide derivatives of fatty acids were recently isolated from cerebrospinal fluid of sleep-deprived animals and found to induce sleep in rats. To determine which brain receptors might be sensitive to these novel neuromodulators, we tested them on a range of receptors expressed in Xenopus oocytes. cis-9,10-Octadecenamide (ODA) markedly potentiated the action of 5-hydroxytryptamine (5-HT) on 5-HT2A and 5-HT2C receptors, but this action was not shared by related compounds such as oleic acid and trans-9,10-octacenamide. ODA was active at concentrations as low as 1 nM. The saturated analog, octadecanamide, inhibited rather than potentiated 5-HT2C responses. ODA had either no effect or only weak effects on other receptors, including muscarinic cholinergic, metabotropic glutamate, GABA(A), N-methyl-D-asparate, or alpha-amino-3-hydroxy-5-methyl-4-isoxozolepropionic acid receptors. Modulation of 5-HT2 receptors by ODA and related lipids may represent a novel mechanism for regulation of receptors that activate G proteins and thereby play a role in alertness, sleep, and mood as well as disturbances of these states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic administration of antidepressants such as fluoxetine and imipramine increases the responsiveness of 5-HT(1A) receptors in dorsal periaqueductal grey matter (DPAG), a midbrain area consistently implicated in the pathogenesis of panic disorder. This effect has been related to the clinically relevant anti-panic action of these drugs. In this study we determined whether long-term administration of fluoxetine also affects 5-HT efflux in DPAG. As a comparison, the effect of chronic treatment with the anxiolytic 5-HT(1A) receptor agonist buspirone on DPAG 5-HT levels was assessed. We also investigated whether the inhibitory effect of chronic fluoxetine on escape behaviour in the rat elevated T-maze, considered as a panicolytic-like effect, is counteracted by intra-DPAG injection of the 5-HT(1A) receptor antagonist WAY 100635. Male Wistar rats were treated (1 or 21 d, i.p.) with fluoxetine, buspirone or vehicle, once daily. After treatment, 5-HT in DPAG was measured by in-vivo microdialysis coupled to HPLC. In another study, rats treated (21 d, i.p.) with either fluoxetine or vehicle also received intra-DPAG injection of WAY 100635 or saline 10 min before being tested in the elevated T-maze. Chronic, but not acute, administration of fluoxetine significantly raised extracellular levels of 5-HT in DPAG. Long-term treatment with buspirone was ineffective. In the elevated T-maze, intra-DPAG injection of WAY 100635 fully blocked the anti-escape effect of chronic administration of fluoxetine. Therefore, chronic fluoxetine facilitates 5-HT(1A)-mediated neurotransmission within DPAG and this effect accounts for the panicolytic-like effect of this antidepressant in the elevated T-maze.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the involvement of 5-HT1-mediated mechanisms in the dorsal periaqueductal gray (dPAG) of animals with past stressful experiences have not been conducted so far. We investigated the role of 5-HT1 receptors in the dPAG of rats previously submitted to contextual fear conditioning. Defensive behaviors induced by activation of the dPAG were assessed by measuring the lowest electric current applied to this structure (threshold) able to produce freezing and escape responses during testing sessions of contextual fear conditioning, in which animals were placed in a context previously paired to footshocks. The 5-HT1A function of the dPAG was evaluated by local injections of 8-OH-DPAT (4 and 8 nmol/0.2 mu L) and WAY-100635 (10 nmol/0.2 mu L), selective agonist and antagonist of 5-HT1A receptors, respectively. In accordance with previous studies, 8-OH-DPAT increased aversive thresholds (antiaversive effects) but injections of WAY 100635 into the dPAG did not produce significant effects on the aversive thresholds in naive rats. However, the aversive thresholds of animals exhibiting contextual fear remained unchanged with both treatments. Moreover, 8-OH-DPAT and WAY 100635 did not change the dPAG post-stimulation freezing. The present results suggest that the stressful experience of being fear conditioned has an effect on the role of the 5-HT1A receptors in mediating unconditioned fear. Also, the reduction in the regulation of the defensive behaviors by 5-HT1A-mediated mechanisms in the dPAG of these animals may underlie the stress precipitated psychopathology associated with the neural substrates of aversion of the dPAG. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin in the lateral septum (LS) has been implicated in the modulation of defensive behaviors and in anxiety. However, it is currently unknown whether changes in 5-HT mechanisms in this brain area may selectively affect defensive responses associated with specific subtypes of anxiety disorders recognized in clinical settings. To address this question, we evaluated the effect of the intra-LS injection of the 5-HT1A/7 receptor agonist 8-CH-DPAT (0.6, 3.0, 15.0 nmol) in male Wistar rats exposed to the elevated T-maze animal model of anxiety. This test allows the measurement of two behavioral defensive responses in the same rat: inhibitory avoidance and escape behavior. In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. The effects of 8-OH-DPAT were compared to those caused by a standard anxiolytic compound, the benzodiazepine receptor agonist midazolam (MDZ, 20 nmol). We also investigated whether the intra-LS injection of the 5-HT1A receptor antagonist WAY-100635 (0.37 nmol) was able to block the effects of 8-OH-DPAT. All animals were also tested in an open field for locomotor activity assessments. Results showed that whereas intra-LS administration of MDZ decreased avoidance latencies, suggesting an anxiolytic action, 8-OH-DPAT caused the opposite effect. Neither drug affected the escape performance. Intra-LS administration of WAY-100635 blocked the anxiogenic effect caused by 8-OH-DPAT. No changes to locomotion were detected in the open field. The data suggests that LS 5-HT1A receptors are involved in the control of inhibitory avoidance behavior and that a failure in this regulatory mechanism may be of importance to the physiopathology of generalized anxiety disorder. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in 5-HT1A receptor-mediated neurotransmission at the level of the median raphe nucleus (MRN) are reported to affect the expression of defensive responses that are associated with generalized anxiety disorder (e.g. inhibitory avoidance) but not with panic (e.g. escape). The objective of this study was to further explore the involvement of MRN 5-HT1A receptors in the regulation of generalized anxiety-related behaviours. Results of experiment 1 showed that intra-MRN injection of the 5-HT1A/7 receptor agonist 8-OH-DPAT (0.6 nmol) in male Wistar rats impaired the acquisition of inhibitory avoidance, without interfering with the performance of escape in the elevated T-maze test of anxiety. Pre-treatment with the 5-HT1A receptor antagonist WAY-100635 (0.18 nmol) fully blocked this anxiolytic-like effect. As revealed by experiment 2, intra-MRN injection of 8-OH-DPAT (0.6, 3 or 15 nmol) also caused anxiolytic effect in rats submitted to the light-dark transition test, another animal model that has been associated with generalized anxiety. In the same test, intra-MRN injection of WAY-100635 (0.18, 0.37 or 0.74 nmol) caused the opposite effect. Overall, the current findings support the view that MRN 5-HT neurons, through the regulation of 5-HT1A somatodendritic autoreceptors, are implicated in the regulation of generalized anxiety-associated behaviours. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous findings point to the involvement of the dorsal raphe nucleus (DRN) and dorsal periaqueductal gray (dPAG) serotonergic receptors in the mediation of defensive responses that are associated with specific subtypes of anxiety disorders. These studies have mostly been conducted with rats tested in the elevated T-maze, an experimental model of anxiety that was developed to allow the measurement, in the same animal, of two behaviors mentioned: inhibitory avoidance and one-way escape. Such behavioral responses have been respectively related to generalized anxiety disorder (GAD) and panic disorder (PD). In order to assess the generality of these findings, in the current study we investigated the effects of the injection of 5-HT-related drugs into the DRN and dPAG of another rodent species, mouse, on the mouse defense test battery (MDTB), a test of a range of defensive behaviors to an unconditioned threat, a predator. Male CD-1 mice were tested in the MDTB after intra-DRN administration of the 5-HT(1A) receptor antagonist WAY-100635 or after intra-dPAG injection of two serotonergic agonists, the 5-HT1A receptor agonist 8-OH-DPAT and the 5-HT(2A/2C) receptor agonist DOI. Intra-DRN injection of WAY-100635 did not change behavioral responses of mice confronted with a rat in the MDTB. In the dPAG, both 8-OH-DPAT and DOI consistently impaired mouse escape behavior assessed in the MDTB. Intra-dPAG infusion of 8-OH-DPAT also decreased measures of mouse risk assessment in the rat exposure test. In conclusion, the current findings are in partial agreement with previous results obtained with rats tested in the elevated T-maze. Although there is a high level of similarity between the behavioral effects obtained in rats (elevated T-maze) and mice (MDTB and RET) with the infusion of 5-HT agonists into the dPAG, the same is not true regarding the effects of blockade of DRN 5-HT(1A) receptors in these rodent species. These data suggest that there may be differences between mice and rats regarding the involvement of the DRN in the mediation of defensive behaviors. (C) 2010 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects. Male Wistar rats received injections of CBD (15, 30, or 60 nmol) into the BNST and were exposed to the elevated plus-maze (EPM) or to the Vogel conflict test (VCT), two widely used animal models of anxiety. CBD increased open arms exploration in the EPM as well as the number of punished licks in the VCT, suggesting an anxiolytic-like effect. The drug did not change the number of entries into the enclosed arms of the EPM nor interfered with water consumption or nociceptive threshold, discarding potential confounding factors in the two tests. Moreover, pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) blocked the effects of CBD in both models. These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of 5-HT1A receptors in the dorsal periaqueductal gray (dPAG) impairs escape behavior, suggesting a panicolytic-like effect. Cannabidiol (CBD), a major non-psychotomimetic compound present in Cannabis sativa, causes anxiolytic-like effects after intra-dPAG microinjections by activating 5-HT1A receptors. In the present work we tested the hypothesis that CBD could also impair escape responses evoked by two proposed animal models of panic: the elevated T-maze (ETM) and electric stimulation of dPAG. In experiment 1 male Wistar rats with a single cannula implanted in the dPAG received a microinjection of CBD or vehicle and, 10 min later, were submitted to the ETM and open field tests. In experiment 2 escape electrical threshold was measured in rats with chemitrodes implanted in the dPAG before and 10 min after CBD microinjection. In experiment 3 similar to experiment 2 except that the animals received a previous intra-dPAG administration of WAY-100635, a 5-HT1A receptor antagonist, before CBD treatment. In the ETM microinjection of CBD into the dPAG impaired inhibitory avoidance acquisition, an anxiolytic-like effect, and inhibited escape response, a panicolytic-like effect. The drug also increased escape electrical threshold, an effect that was prevented by WAY-100635. Together, the results suggest that CBD causes panicolytic effects in the dPAG by activating 5-HT1A receptors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microtubule-associated protein 1A (MAP1A) is essential during the late differentiation phase of neuronal development. Here, we demonstrated the presence of two MAP1A isoforms with a differential spatial distribution in the adult mouse barrel cortex. Antibody A stained MAP1A in pyramidal and stellate cells, including dendrites that crossed layer IV in the septa between barrels. The other antibody, BW6 recognized a MAP1A isoform that was mainly confined to the barrel hollow and identified smaller caliber dendrites. Previously, an interaction of MAP1A and the serotonin 5-hydroxytryptamine 2A (5-HT(2A)) receptor was shown in the rat cortex. Here, we identified, by double-immunofluorescent labeling, MAP1A isoform and serotonin 5-HT(2A) receptor distribution. MAP1A co-localized mainly with 5-HT(2A) receptor in larger apical dendrites situated in septa. This differential staining of MAP1A and a serotonin receptor in defined barrel compartments may be due to changes in the expression or processing of MAP1A during dendritic transport as a consequence of functional differences in processing of whisker-related sensory input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

nerv5o-HusT s ryescteempto. rTshaer oeb pjercetdiovme oinfa tnhtilsy s ltoucdaytewd ains ttoh ein bvreasitnig aanted tahree rionlveo olvf ehdy ipno tphaanlacrmeiact i5c- fHuTn,c t5i-oHn TaInAd acneldl p5r-HolTif2ercatrieocnepttohrr obuingdh isnygm apnadt hgeetniec pphtrqsHehepayaxuTevnepnpa cecIocnrhAirarettfyehilies pfceaasaai tdiolnetaoiae tcddnndmhc tr etab5aiueoncly-ggsamHr oermeHnndiaTasPeuituse2s rsLremdtca id oC tn[orri 3fegoa.5d H c n7t5-epseH.]2l- a mpHro nThtefeoTcv IsprrApeIueaAralga nesnaeterccninrdgrcrdeei e erntc aae5oeeettxg -pie.npHc ectTe rnotrTahoereersme2 rgas acseeiisthosnsxienaaoeprdmynrer a eicr wniestani pstalot iestrhsonov.aen r ted5u shloo-sm..yHifn nT pOe5RTgoh -u bINtH6iAhrys0AT a r%saluIe ta neussA mdxupidn plauya5tgnrnss - ei csHdssospr u sfT5teeg hia-s2cogHehticneef aT fisc.rmc it2teTr oacsc htmot gehr eppoteey oentc 5oh. rei -iarysTpdHsttpthee oTwonde[rt3I ,t ehp AgiH7rfaaeey2 ]lnnaa8 ce5nhmd-r O- doweaiHw caHn5atTnds-i sDc H I-ea7rAPrnT reodaA eg2atalguoyTncyelnz dan.sr eete5 ee5drrp-cdg a-HaebH itincpyTino Tc tr2nRore2cterThccaswee-r trpPe eahecctgCscyoet eRoeperpnmv tpo.feo autt5i rohlsen-ueraxHacdalpstaTtigsremor aeedcanynsuot asbs esnwli.y. o t er5e Ran5ex-nsgTH-pt Hudi-rTnPlwoeTa Csncatt sciohesRioo n oehnb ntna i ey7tgdn ne i huaundntel rs tywartii,nshn y ai5igngesss-

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epilepsy is a syndrome of episodic brain dysfunction characterized by recurrent unpredictable, spontaneous seizures. Cerebellar dysfunction is a recognized complication of temporal lobe epilepsy and it is associated with seizure generation, motor deficits and memory impairment. Serotonin is known to exert a modulatory action on cerebellar function through 5HT2C receptors. 5-HT2C receptors are novel targets for developing anticonvulsant drugs. In the present study, we investigated the changes in the 5-HT2C receptors binding and gene expression in the cerebellum of control, epileptic and Bacopa monnieri treated epileptic rats. There was a significant down regulation of the 5-HT content (pb0.001), 5-HT2C gene expression (pb0.001) and 5-HT2C receptor binding (pb0.001) with an increased affinity (pb0.001). Carbamazepine and B. monnieri treatments to epileptic rats reversed the down regulated 5-HT content (pb0.01), 5-HT2C receptor binding (pb0.001) and gene expression (pb0.01) to near control level. Also, the Rotarod test confirms the motor dysfunction and recovery by B. monnieri treatment. These data suggest the neuroprotective role of B. monnieri through the upregulation of 5-HT2C receptor in epileptic rats. This has clinical significance in the management of epilepsy