955 resultados para 5-DOF haptic interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stand-alone virtual environments (VEs) using haptic devices have proved useful for assembly/disassembly simulation of mechanical components. Nowadays, collaborative haptic virtual environments (CHVEs) are also emerging. A new peer-to-peer collaborative haptic assembly simulator (CHAS) has been developed whereby two users can simultaneously carry out assembly tasks using haptic devices. Two major challenges have been addressed: virtual scene synchronization (consistency) and the provision of a reliable and effective haptic feedback. A consistency-maintenance scheme has been designed to solve the challenge of achieving consistency. Results show that consistency is guaranteed. Furthermore, a force-smoothing algorithm has been developed which is shown to improve the quality of force feedback under adverse network conditions. A range of laboratory experiments and several real trials between Labein (Spain) and Queen’s University Belfast (Northern Ireland) have verified that CHAS can provide an adequate haptic interaction when both users perform remote assemblies (assembly of one user’s object with an object grasped by the other user). Moreover, when collisions between grasped objects occur (dependent collisions), the haptic feedback usually provides satisfactory haptic perception. Based on a qualitative study, it is shown that the haptic feedback obtained during remote assemblies with dependent collisions can continue to improve the sense of co-presence between users with regard to only visual feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic information originates from a different human sense (touch), therefore the quality of service (QoS) required to supporthaptic traffic is significantly different from that used to support conventional real-time traffic such as voice or video. Each type ofnetwork impairment has different (and severe) impacts on the user’s haptic experience. There has been no specific provision of QoSparameters for haptic interaction. Previous research into distributed haptic virtual environments (DHVEs) have concentrated onsynchronization of positions (haptic device or virtual objects), and are based on client-server architectures.We present a new peerto-peer DHVE architecture that further extends this to enable force interactions between two users whereby force data are sent tothe remote peer in addition to positional information. The work presented involves both simulation and practical experimentationwhere multimodal data is transmitted over a QoS-enabled IP network. Both forms of experiment produce consistent results whichshow that the use of specific QoS classes for haptic traffic will reduce network delay and jitter, leading to improvements in users’haptic experiences with these types of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier transform IR spectra in the ν2 and ν3 regions between 800 and 1500 cm−1 have been measured of H16OF with a resolution of 0.007 cm−1 and of H18OF and DOF with a resolution of 0.040 cm−1. Ground state constants have been improved for H16OF and have been obtained for the first time for H18OF. Parameters of the v2 = 1 and v3 = 1 excited states have been determined from rovibrational analyses of ca. 1000 ν2/ν3 lines which were fitted with σ 0.36, 4.5, and 7.6 × 10−3 cm−1 for H16OF, H18OF, and D16OF, respectively. Band centers of ν2/ν3 are 1353.40466(5)/889.07974(6), 1350.3976(5)/862.2967(7), and 1002.0083(9)/891.0014(15) cm−1, respectively, for the three isotopic species. While ν2 and ν3 are sufficiently separated in HOF to be treated independently, a Coriolis resonance is evident in DOF, the interaction constant ξ23c = 0.19073(16) cm−1 being in agreement with the prediction from the harmonic force field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic interfaces can provide highly realistic interaction with objects within their workspace, but the task of interacting with objects over large areas or volumes is made difficult by the limits of interface travel. This paper details the development of a custom haptic interface - for navigating a large virtual environment (a simulated supermarket), and investigation into different control methods which allow for haptic interaction over extremely large workspaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In manual cell injection the operator relies completely on visual information for task feedback and is subject to extended training times as well as poor success rates and repeatability. From this perspective, enhancing human-in-the-loop intracellular injection through haptic interaction offers significant benefits. This paper outlines two haptic virtual fixtures aiming to assist the human operator while performing cell injection. The first haptic virtual fixture is a parabolic force field designed to assist the operator in guiding the micropipette's tip to a desired penetration point on the cell's surface. The second is a planar virtual fixture which attempts to assist the operator from moving the micropipette's tip beyond the deposition target location inside the cell. Preliminary results demonstrate the operation of the haptically assisted microrobotic cell injection system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serotonin transporter gene (5-HTT) encodes a transmembrane protein that plays an important role in regulating serotonergic neurotransmission and related aspects of mood and behaviour. The short allele of a 44 bp insertion/deletion polymorphism (S-allele) within the promoter region of the 5-HTT gene (5-HTTLPR) confers lower transcriptional activity relative to the long allele (L-allele) and may act to modify the risk of serotonin-mediated outcomes such as anxiety and substance use behaviours. The purpose of this study was to determine whether (or not) 5-HTTLPR genotypes moderate known associations between attachment style and adolescent anxiety and alcohol use outcomes. Participants were drawn from an eight-wave study of the mental and behavioural health of a cohort of young Australians followed from 14 to 24 years of age (Victorian Adolescent Health Cohort Study, 1992 - present). No association was observed within low-risk attachment settings. However, within risk settings for heightened anxiety (ie, insecurely attached young people), the odds of persisting ruminative anxiety (worry) decreased with each additional copy of the S-allele (B30% per allele: OR 0.77, 95% CI 0.62–0.97, P¼0.029). Within risk settings for binge drinking (ie, securely attached young people), the odds of reporting persisting high-dose alcohol consumption (bingeing) decreased with each additional copy of the S-allele (B35% per allele: OR 0.74, 95% CI 0.64–0.86, Po0.001). Our data suggest that the S-allele is likely to be important in psychosocial development, particularly in those settings that increase risk of anxiety and alcohol use problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic interaction has received increasing research interest in recent years. Currently, most commercially available haptic devices provide the user with a single point of interaction. Multi-point haptic devices present a logical progression in device design and enable the operator to experience a far wider range of haptic interactions, particularly the ability to grasp via multiple fingers. This is highly desirable for various haptically enabled applications including virtual training, telesurgery and telemanipulation. This paper presents a gripper attachment which utilises two low-cost commercially available haptic devices to facilitate multi-point haptic grasping. It provides the ability to render forces to the user's fingers independently and using Phantom Omni haptic devices offers several benefits over more complex approaches such as low-cost, reliability, and ease of programming. The workspace of the gripper attachment is considered and in order to haptically render the desired forces to the user's fingers, kinematic analysis is discussed and necessary formulations presented. The integrated multi-point haptic platform is presented and exploration of a virtual environment using CHAI 3D is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microrobotic cell injection is an area of growing research interest. Typically, operators rely on visual feedback to perceive the microscale environment and are subject to lengthy training times and low success rates. Haptic interaction offers the ability to utilise the operator’s haptic modality and to enhance operator performance. Our earlier work presented a haptically enabled system for assisting the operator with certain aspects of the cell injection task. The system aimed to enhance the operator’s controllability of the micropipette through a logical mapping between the haptic device and microrobot, as well as introducing virtual fixtures for haptic guidance. The system was also designed in such a way that given the availability of appropriate force sensors, haptic display of the cell penetration force is straightforward. This work presents our progress towards a virtual replication of the system, aimed at facilitating offline operator training. It is suggested that operators can use the virtual system to train offline and later transfer their skills to the physical system. In order to achieve the necessary representation of the cell within the virtual system, methods based on a particle-based cell model are utilised. In addition to providing the necessary visual representation, the cell model provides the ability to estimate cell penetration forces and haptically display them to the operator. Two different approaches to achieving the virtual system are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic technologies allow human users to haptically interact with virtual environments. Haptics has been employed in many application domains including operator training, virtual exploration and teleoperation. Currently, most commercially available haptic devices focus on a single point of haptic interaction. While single-point haptics have been successfully employed in many applications, they remain limited to particular types of haptic interaction. Multi-point haptic devices are a logical progression and facilitate a far wider range of interactions including object grasping, multi-finger object manipulation and size discrimination. The ability to effectively achieve such interactions offers significant benefits for many applications including virtual training, telesurgery and telemanipulation. In such applications, the ability to use multi-point haptic interactions can provide far more effective user interaction as well improved perception of the virtual environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel 6-DOF parallel kinematic manipulator named the Octahedral Hexarot is presented and analyzed. It is shown that this manipulator has the important benefits of combining a large positional workspace in relation to its footprint with a sizable range of platform rotations. These features are obtained by combining a rotation-symmetric actuating arm system with links in an octahedral-like configuration. Thus the manipulator consists of a central cylindrical column with six actuated rotating upper arms that can rotate indefinitely around the central column. Each upper arm is connected to a manipulated platform by one 5-DOF lower arm link. The link arrangement of the Octahedral Hexarot is inspired by the original Gough platform. The manipulated platform is an equilateral triangle and the joint positions on the upper arms approximately form an equilateral triangle. A task dependent optimization procedure for the structural parameters is proposed and the workspace of the resulting manipulator is analyzed in depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commonly, surface and solid haptic effects are defined in such a way that they hardly can be rendered together. We propose a method for defining mixed haptic effects including surface, solid, and force fields. These haptic effects can be applied to virtual scenes containing various objects, including polygon meshes, point clouds, impostors, and layered textures, voxel models as well as function-based shapes. Accordingly, we propose a way how to identify location of the haptic tool in such virtual scenes as well as consistently and seamlessly determine haptic effects when the haptic tool moves in the scenes with objects having different sizes, locations, and mutual penetrations. To provide for an efficient and flexible rendering of haptic effects, we propose to concurrently use explicit, implicit and parametric functions, and algorithmic procedures.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite recent advances in artificial intelligence and autonomous robotics, teleoperation can provide distinct benefits in applications requiring real-time human judgement and intuition. However, as robotic systems are increasingly becoming sophisticated and are performing more complex tasks, realizing these benefits requires new approaches to teleoperation. This paper introduces a novel haptic mediator interface for teleoperating mobile robotic platforms that have a variety of manipulators and functions. Identical master-slave bilateral teleoperation of the robotic manipulators is achieved by representing them in virtual reality and by allowing the operator to interact with them using a multipoint haptic device. The operator is also able to command motions to the mobile platform by using a novel haptic interaction metaphor rather than a separate dedicated input device. The presented interaction techniques enable the operator to perform a wide range of control functions and achieve functionality similar to that of conventional teleoperation schemes that use a single haptic interface. The mediator interface is presented, and important considerations such as workspace mapping and scaling are discussed. © 2015 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to perform accurate micromanipulation offers wide-reaching benefits and is of increasing interest to researchers. Recent research into microgripper, microtweezer, and microforcep systems contributes toward accurate micrograsping and manipulation. Despite these efforts, achieving adequate operator control remains a distinct research challenge. Haptic interfaces interact with the human's haptic modality and offer the ability to enhance the operator's controllability of micromanipulation systems. Our previous work introduced single-point haptic guidance to assist the operator during intracellular microinjection. This paper extends the approach to propose multipoint haptic guidance for micrograsping tasks. Accurate micrograsping is valuable in many applications, including microassembly and biomanipulation. A multipoint haptic gripper facilitates haptic interaction, and haptic guidance assists the operator in controlling systems suitable for micrograsping. Force fields are used to guide the operator to suitable grasp points on micrometer-sized objects and consist of attractive and repulsive forces. The ability of the force field to effectively assist the operator in grasping the cell is evaluated using a virtual environment. Evaluation results demonstrate the ability of the approach to significantly reduce participants' average grasping error.