985 resultados para 467
Resumo:
Quantity, type, and maturity of the organic matter of middle Miocene to Quaternary sediments from the eastern North Pacific (Deep Sea Drilling Project Leg 63) were determined. Hydrocarbons and fatty acids in lipid extracts were analyzed by capillary column gas chromatography and combined gas chromatography/mass spectrometry. Kerogens were investigated by Rock-Eval pyrolysis and microscopy, and vitrinite reflectance values were determined. At Site 467, in the San Miguel Gap of the outer California Continental Borderland, organic carbon contents range from 1.46% to 5.40%. Normalized to organic carbon, total extracts increase from about 10 to 36 mg/g Corg with depth. The organic matter is a mixture of both marine and terrestrial origin, with the marine organic matter representing a high proportion in some of the samples. Steroid hydrocarbons - sterenes and steradienes in the upper part of the section and steranes in the deepest sample - are the most abundant compounds in the nonaromatic hydrocarbon fractions. Perylene, alkylated thiophenes, and aromatic steroid hydrocarbons dominate in the aromatic hydrocarbon fractions of the shallower samples; increasing maturation is indicated by a more petroleumlike aromatic hydrocarbon distribution. Microscopy revealed a high amount of liptinitic organic matter and confirmed the maturation trend as observed from analysis of the extracts. The vitrinite reflectance may be extrapolated to a bottom-hole value of nearly 0.5% Ro. The liquid hydrocarbon potential of the sediments at higher maturity levels is rated to be good to excellent. At Site 471, off Baja California, organic carbon values are between 0.70% and 1.12%. Extract values increase with depth, as at Site 467. The investigation of the soluble and insoluble organic matter, despite some compositional similarities, consistently revealed a more terrigenous influx compared with Site 467. Thus the potential for liquid hydrocarbon generation is lower, the organic matter being more gas-prone. The deepest sample analyzed indicates the onset of hydrocarbon generation. At this site, frequent sand intercalations offer pathways for migration and possibly reservoir formation.
Resumo:
The southward passage of the Rivera triple junction and its effect on the North American plate are primary controls on the Miocene tectonic evolution of the outer borderland of California. Detrital modes of sand shed off the Patton Ridge and cored by the Deep Sea Drilling Project provide evidence of progressive tectonic erosion of the Patton accretionary prism and neartrench volcanism. Volcanic glass in the sediment is predominantly calcalkaline rhyolite and andesite, typical of subductionrelated volcanism, but also includes minor low-K2O tholeiitic basalt. We attribute these compositional features to interaction with a spreading ridge associated with a possible trench-ridge-trench triple junction along the Patton Escarpment from 18 to 16 Ma. This study suggests that evidence of ridge-trench interaction may be commonly preserved along submerged plate margins, in contrast to its more limited recognition and discussion in the literature based on exposed examples in Chile, Japan and Alaska.
Resumo:
Results of the analyses of twenty-three samples from the Middle Miocene to Lower Pliocene strata from DSDP Site 467, offshore California, are presented. The analyses were performed with the aim of determining the origin of the organic matter, the stratigraphic section's hydrocarbon generation potential and extent of organic diagenesis. Organic carbon contents are an order of magnitude greater than those typically found in deep sea sediments, suggesting an anoxic depositional environment and elevated levels of primary productivity. Hydrocarbon generation potentials are above average for most samples. The results of elemental analyses indicate that the kerogens are primarily composed of type II organic matter and are thermally immature. Analysis of the bitumen fractions confirms that the samples are immature. In cores from 541 to 614 meters, the gas chromatograms of the C15+ non-aromatic hydrocarbon fractions are dominated by a single peak which was identified as 17*(H), 18*(H), 21beta(H)-28, 30-bisnorhopane. This interval is the same area in which the highest degrees of anoxia are observed as reflected by the lowest pristane/phytane ratios. This correlation may have some implications with regard to the origin of the bisnorhopane and its possible use as an indicator of anoxic depositional conditions within thermally immature sediments.
Resumo:
A number of C25 and C30 highly branched isoprenoid (HBI) sulphur compounds (E.G., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo[b]thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterisation, desulphurisation, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C25 and C30 HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 ka) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C25 and C30) and unsaturated HBI thiolanes (C25 and C30) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulphur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulphur compounds is proposed based on the identification of HBI sulphur compounds in sediment samples with different maturity levels.