991 resultados para 4-COMPARTMENT MODEL
Resumo:
"April 1977."
Resumo:
Objective: Several limitations of published bioelectrical impedance analysis (BIA) equations have been reported. The aims were to develop in a multiethnic, elderly population a new prediction equation and cross-validate it along with some published BIA equations for estimating fat-free mass using deuterium oxide dilution as the reference method. Design and setting: Cross-sectional study of elderly from five developing countries. Methods: Total body water (TBW) measured by deuterium dilution was used to determine fat-free mass (FFM) in 383 subjects. Anthropometric and BIA variables were also measured. Only 377 subjects were included for the analysis, randomly divided into development and cross-validation groups after stratified by gender. Stepwise model selection was used to generate the model and Bland Altman analysis was used to test agreement. Results: FFM = 2.95 - 3.89 (Gender) + 0.514 (Ht(2)/Z) + 0.090 (Waist) + 0.156 (Body weight). The model fit parameters were an R(2), total F-Ratio, and the SEE of 0.88, 314.3, and 3.3, respectively. None of the published BIA equations met the criteria for agreement. The new BIA equation underestimated FFM by just 0.3 kg in the cross-validation sample. The mean of the difference between FFM by TBW and the new BIA equation were not significantly different; 95% of the differences were between the limits of agreement of -6.3 to 6.9 kg of FFM. There was no significant association between the mean of the differences and their averages (r = 0.008 and p = 0.2). Conclusions: This new BIA equation offers a valid option compared with some of the current published BIA equations to estimate FFM in elderly subjects from five developing countries.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.
Resumo:
OBJECTIVES: We developed a population model that describes the ocular penetration and pharmacokinetics of penciclovir in human aqueous humour and plasma after oral administration of famciclovir. METHODS: Fifty-three patients undergoing cataract surgery received a single oral dose of 500 mg of famciclovir prior to surgery. Concentrations of penciclovir in both plasma and aqueous humour were measured by HPLC with fluorescence detection. Concentrations in plasma and aqueous humour were fitted using a two-compartment model (NONMEM software). Inter-individual and intra-individual variabilities were quantified and the influence of demographics and physiopathological and environmental variables on penciclovir pharmacokinetics was explored. RESULTS: Drug concentrations were fitted using a two-compartment, open model with first-order transfer rates between plasma and aqueous humour compartments. Among tested covariates, creatinine clearance, co-intake of angiotensin-converting enzyme inhibitors and body weight significantly influenced penciclovir pharmacokinetics. Plasma clearance was 22.8 ± 9.1 L/h and clearance from the aqueous humour was 8.2 × 10(-5) L/h. AUCs were 25.4 ± 10.2 and 6.6 ± 1.8 μg · h/mL in plasma and aqueous humour, respectively, yielding a penetration ratio of 0.28 ± 0.06. Simulated concentrations in the aqueous humour after administration of 500 mg of famciclovir three times daily were in the range of values required for 50% growth inhibition of non-resistant strains of the herpes zoster virus family. CONCLUSIONS: Plasma and aqueous penciclovir concentrations showed significant variability that could only be partially explained by renal function, body weight and comedication. Concentrations in the aqueous humour were much lower than in plasma, suggesting that factors in the blood-aqueous humour barrier might prevent its ocular penetration or that redistribution occurs in other ocular compartments.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Little is known about the pharmacokinetics of potassium canrenoate/canrenone in paediatric patients WHAT THIS STUDY ADDS • A population pharmacokinetic model has been developed to evaluate the pharmacokinetics of canrenone in paediatric patients who received potassium canrenoate as part of their therapy in the intensive care unit. AIMS To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate to paediatric patients. METHODS Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16–28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids, e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analyzed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. RESULTS A one compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (l h−1) = 11.4 × (WT/70.0)0.75 and V/F (l) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 l h−1 and 21.4 l, respectively, resulting in an elimination half-life of 11.2 h. CONCLUSIONS The range of estimated CL/F in the study population was 0.67–7.38 l h−1. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients.
Resumo:
Using NONMEM, the population pharmacokinetics of perhexiline were studied in 88 patients (34 F, 54 M) who were being treated for refractory angina. Their mean +/- SD (range) age was 75 +/- 9.9 years (46-92), and the length of perhexiline treatment was 56 +/- 77 weeks (0.3-416). The sampling time after a dose was 14.1 +/- 21.4 hours (0.5-200), and the perhexiline plasma concentrations were 0.39 +/- 0.32 mg/L (0.03-1.56). A one-compartment model with first-order absorption was fitted to the data using the first-order (FO) approximation. The best model contained 2 subpopulations (obtained via the $MIXTURE subroutine) of 77 subjects (subgroup A) and 11 subjects (subgroup B) that had typical values for clearance (CL/F) of 21.8 L/h and 2.06 L/h, respectively. The volumes of distribution (V/F) were 1470 L and 260 L, respectively, which suggested a reduction in presystemic metabolism in subgroup B. The interindividual variability (CV%) was modeled logarithmically and for CL/F ranged from 69.1% (subgroup A) to 86.3% (subgroup B). The interindividual variability in V/F was 111%. The residual variability unexplained by the population model was 28.2%. These results confirm and extend the existing pharmacokinetic data on perhexiline, especially the bimodal distribution of CL/F manifested via an inherited deficiency in hepatic and extrahepatic CYP2D6 activity.
Resumo:
OBJECTIVE: The purpose of this study was to determine the population pharmacokinetics of magnesium from sparse observational data in patients with preeclampsia. STUDY DESIGN: Serum magnesium concentrations (1-11 per patient) were obtained retrospectively from the records of 116 patients with preeclampsia who had a loading dose of magnesium sulfate (16 or 20 mmol), followed by a maintenance dose (1 mmol/h) over an average of 28 hours. Population clearance, volume of distribution, and the baseline magnesium concentration were estimated using the NONMEM program. RESULTS: The following population typical values, together with the interpatient variability (expressed as coefficient of variation) were obtained with the use of a 1-compartment model: systemic clearance, 4.28 L/h (37.3%); volume of distribution, 32.3 L (32.1%); baseline concentration, 0.811 mmol/L (18.5%). The average half-life was 5.2 hours. Clonus was not obtunded in 4 patients whose serum magnesium concentrations were similar to the average concentration of 1.7 mmol/L. The variability remaining unexplained after the population model was fitted to the data was 6.5% to 10.8%. CONCLUSION: This study extended knowledge of the pharmacokinetic disposition of magnesium in preeclampsia. The results are potentially useful for the calculation of loading and maintenance doses, particularly when the relationship between serum concentration and effect in preeclampsia is clarified.
Resumo:
OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.
Resumo:
BACKGROUND: Recommended oral voriconazole (VRC) doses are lower than intravenous doses. Because plasma concentrations impact efficacy and safety of therapy, optimizing individual drug exposure may improve these outcomes. METHODS: A population pharmacokinetic analysis (NONMEM) was performed on 505 plasma concentration measurements involving 55 patients with invasive mycoses who received recommended VRC doses. RESULTS: A 1-compartment model with first-order absorption and elimination best fitted the data. VRC clearance was 5.2 L/h, the volume of distribution was 92 L, the absorption rate constant was 1.1 hour(-1), and oral bioavailability was 0.63. Severe cholestasis decreased VRC elimination by 52%. A large interpatient variability was observed on clearance (coefficient of variation [CV], 40%) and bioavailability (CV 84%), and an interoccasion variability was observed on bioavailability (CV, 93%). Lack of response to therapy occurred in 12 of 55 patients (22%), and grade 3 neurotoxicity occurred in 5 of 55 patients (9%). A logistic multivariate regression analysis revealed an independent association between VRC trough concentrations and probability of response or neurotoxicity by identifying a therapeutic range of 1.5 mg/L (>85% probability of response) to 4.5 mg/L (<15% probability of neurotoxicity). Population-based simulations with the recommended 200 mg oral or 300 mg intravenous twice-daily regimens predicted probabilities of 49% and 87%, respectively, for achievement of 1.5 mg/L and of 8% and 37%, respectively, for achievement of 4.5 mg/L. With 300-400 mg twice-daily oral doses and 200-300 mg twice-daily intravenous doses, the predicted probabilities of achieving the lower target concentration were 68%-78% for the oral regimen and 70%-87% for the intravenous regimen, and the predicted probabilities of achieving the upper target concentration were 19%-29% for the oral regimen and 18%-37% for the intravenous regimen. CONCLUSIONS: Higher oral than intravenous VRC doses, followed by individualized adjustments based on measured plasma concentrations, improve achievement of the therapeutic target that maximizes the probability of therapeutic response and minimizes the probability of neurotoxicity. These findings challenge dose recommendations for VRC.
Resumo:
Objectives: Gentamicin is among the most commonly prescribed antibiotics in newborns, but large interindividual variability in exposure levels exists. Based on a population pharmacokinetic analysis of a cohort of unselected neonates, we aimed to validate current dosing recommendations from a recent reference guideline (Neofax®). Methods: From 3039 concentrations collected in 994 preterm (median gestational age 32.3 weeks, range 24.2-36.5) and 455 term newborns, treated at the University Hospital of Lausanne between 2006 and 2011, a population pharmacokinetic analysis was performed with NONMEM®. Model-based simulations were used to assess the ability of dosing regimens to bring concentrations into targets: trough ≤ 1mg/L and peak ~ 8mg/L. Results: A two-compartment model best characterized gentamicin pharmacokinetics. Model parameters are presented in the table. Body weight, gestational age and postnatal age positively influence clearance, which decreases under dopamine administration. Body weight and gestational age influence the distribution volume. Model based simulations confirm that preterm infants need doses superior to 4 mg/kg, and extended dosage intervals, up to 48 hours for very preterm newborns, whereas most term newborns would achieve adequate exposure under 4 mg/kg q. 24 h. More than 90% of neonates would achieve trough concentrations below 2 mg/L and peaks above 6 mg/L following most recent guidelines. Conclusions: Simulated gentamicin exposure demonstrates good accordance with recent dosing recommendations for target concentration achievement.