970 resultados para 3RD VENTRICLE AV3V
Resumo:
Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic preganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (IS days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula. implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.
Resumo:
Two groups of rats with electrolytic lesions of the medial and upper septal area (MUL) or, alternatively, of the anteroventral portion of the third ventricle (AV3V) and a third group of sham-operated rats were water loaded and received three carbachol injections into the locus coeruleus according to the following schedule: 1) prelesion, 2) on the second postlesion day and 3) on the seventh postlesion day. Both MUL and AV3V lesions inhibited the carbachol-induced natriuresis on the second postlesion day. Recovery was almost complete after MUL but not after AV3V lesion on the seventh day. Water deprivation also reduced the carbachol-induced natriuresis but passive hydration of AV3V animals did not avoid the impairment induced by the lesion. Transient seizure phenomena such as clonic convulsions, salivation and analgesia subsequent to carbachol injection were not altered by the lesions.
Resumo:
In the present study we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, dipsogenic, natriuretic and kaliuretic responses induced by the injection of carbachol (a cholinergic agonist) into the medial septal area (MSA) of rats. Male rats with sham or AV3V lesion and a stainless-steel cannula implanted into the MSA were used. Carbachol (2 nmol) injected into the MSA in sham lesion rats produced pressor (43 +/- 2 mmHg), dipsogenic (9.6 +/- 1.2 ml/h), natriuretic (531 +/- 82-mu-Eq/120 min) and kaliuretic (164 +/- 14-mu-Eq/120 min) responses. In AV3V-lesioned rats (1-5 days and 14-18 days), the pressor (11 +/- 2 mmHg, respectively), dipsogenic (1.9 +/- 0.7 and 1.4 +/- 0.6 ml/h), natriuretic (21 +/- 5 and 159 +/- 44-mu-Eq/120 min) and kaliuretic (124 +/- 14 and 86 +/- 13-mu-Eq/120 min) responses induced by carbachol injection into the MSA were reduced. These results show that the AV3V region is essential for the pressor, dipsogenic, natriuretic and kaliuretic responses induced by cholinergic activation of the MSA in rats.
Resumo:
In the present study, we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, tachycardic, dipsogenic, natriuretic, and kaliuretic responses induced by the injection of the cholinergic agonist carbachol into the ventromedial hypothalamic nucleus (VMH) of rats. Male rats with sham or AV3V lesion and a stainless steel cannula implanted into the VMH were used. Carbachol (2 nmol) injected into the VMH of sham rats produced pressor (32 +/- 4 mmHg). tachycardic (83 +/- 14 bpm), dipsogenic (8.2 +/- 1.1 ml/h). natriuretic (320 +/- 46-mu-Eq/120 min), and kaliuretic (155 +/- 20-mu-Eq/120 min) responses. In AV3V-lesioned rats (2 and 15 days), the pressor (4 +/- 2 and 15 +/- 2 mmHg. respectively), dipsogenic (0.3 +/-0.2 and 1.4 +/- 0.7 ml/h), natriuretic (17 +/- 7 and 99 +/- 21-mu-Eq/120 min), and kaliuretic (76 +/- 14 and 79 +/- 7-mu-Eq/120 min) responses induced by carbachol injection into the VMH were reduced. The tachycardia was also abolished (27 +/- 15 and -23 +/-29 bpm, respectively). These results show that the AV3V region is essential for the pressor, tachycardic, dipsogenic, natriuretic. and kaliuretic responses induced hy cholinergic activation of the VMH in rats.
Resumo:
In this study we investigated the effect of the anteroventral third ventricle (AV3V) lesion on the pressor, bradycardic, natriuretic, kaliuretic, and dipsogenic responses induced by the injection of the cholinergic agonist carbachol into the lateral preoptic area (LPOA) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with stainless steel cannula directly into the LPOA. Injection of carbachol (7.5 nmol) into the LPOA of sham rats induced natriuresis (405 ± 66 μEq/120 min), kaliuresis (234 ± 44 μEq/120 min), water intake (9.5 ± 1.7 ml/60 min), bradycardia (-47 ± 11 bpm), and increase in mean arterial pressure (28 ± 3 mmHg). Acute AV3V lesion (1-5 days) reduced the natriuresis (12 ± 4 μEq/120 min), kaliuresis (128 ± 27 μEq/120 min), water intake (1.7 ± 0.9 ml/60 min), and pressor responses (14 ± 4 mmHg) produced by carbachol into the LPOA. Tachycardia instead of bradycardia was also observed. Chronic (14-18 days) AV3V lesion reduced only the pressor response (10 ± 2 mmHg) induced by carbachol. These results showed that acute, but not chronic, AV3V lesion reduced the natriuretic, kaliuretic, and dipsogenic responses to carbachol injection into the LPOA. The pressor response was reduced in acute or chronic AV3V-lesioned rats. The results suggest that the lateral areas may control the fluid and electrolyte balance independently from the AV3V region in chronic AV3V-lesioned rats. © 1992.
Resumo:
The effect of intravenous infusion of hypertonic saline (HS) on the recovery of mean arterial pressure (MAP) during septic shock was studied in sham-operated rats and in rats with electrolytic lesion in the anteroventral third ventricle (AV3V) region. Our results show that intravenous HS infusion in rats treated with endotoxin (Etx) partially restores MAP, but when we have a severe shock produced by Etx, HS was not able to reverse the hypotension. We also show that the integrity of the AV3V region is essential for the protective action of HS in endotoxin shock. It is possible that NO production contributes to the deleterious effect of endotoxin. So, the unraveling of the release of NO by the vascular endothelium and their role as regulators of vascular tone is increasing our understanding of the physiology and pathophysiology of the cardiovascular system and will therefore enhance the possibilities of preventing and treating endotoxin shock.
Resumo:
The periventricular tissue of the anterior ventral portion of the third ventricle (AV3V) is an important area for the control of hydromineral balance and of cardiovascular function. The present work discusses the importance of the integrity of the AV3V for multiple responses to central cholinergic activation (water intake, hypertension, natriuresis, salivation) and for the control of salt intake.
Resumo:
The maintenance of the arterial pressure in normal levels is important for the homeostasis of body fluids. The central nervous system regulating sympathetic and parasympathetic autonomic efferent can adjust arterial pressure which allows animals or human to face different daily activities with the best performance. Different central areas are responsible for the control of autonomic discharges to cardiovascular system and many of them are also involved in the control of fluid electrolyte balance. One of these areas is the tissue surrounding the anteroventral third ventricle (AV3V region) localized in the forebrain and a main central site for angiotensin II receptors and osmoreceptors. The AV3V lesions impair the development of many models of experimental hypertension in rats and the pressor responses to different stimuli. Lesions of the AV3V region also reduce dipsogenic responses to angiotensin II, central cholinergic activation, water deprivation and increase in plasma osmolarity, atrial natriuretic peptide secretion produced by body fluid expansion and the increase in renal excretion to central cholinergic activation. Recent evidence also suggests the participation of AV3V region in pressor responses produced by the activation of medullary mechanisms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions in the anteroventral third ventricle (AV3V) region or in the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by central clonidine in rats. Mean arterial pressure and heart rate were recorded in sham or AV3V-lesioned rats with cerebral stainless steel cannulae implanted into the lateral cerebral ventricle (ICV) or LH. and in sham or bilateral LH-lesioned rats with cannulae-implanted ICV. The injection of clonidine (40 nmol) ICV or into the LH of sham rats produced a pressor response (37 +/- 2-48 +/- 3 mmHg) and bradycardia (-45 +/- 10--93 +/- 6 bpm). After AV3V-lesion (3 and 12 days) or LH-lesion (3 days) the pressor response was abolished and a small hypotensive response was induced by the injection of clonidine (-1 +/- 3--16 +/- 3 mmHg). The bradycardia (-27 +/- 6--57 +/- 11 bpm) was reduced, but not abolished by the lesions. These results show that the AV3V region and LH are important cerebral structures that participate in the excitatory pathways involved in the pressor response to central clonidine in rats. They also suggest that, in the absence of these pressor pathways, the hypotensive responses to central clonidine may appear in conscious rats.
Resumo:
The effect in rats of an anteroventral third ventricle (AV3V) electrolytic lesion on salivary secretion induced by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of a cholinergic agonist (pilocarpine) was investigated. Sham- or AV3V-lesioned rats anesthetized with urethane and with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The amount of salivary secretion was studied over a seven-minute period after i.c.v. or i.p. injection of pilocarpine. In sham-operated rats, i.p. injection of pilocarpine (1 mg/kg b.w.) (after 6 h, 2, 7, and 15 days) produced salivary secretion (486 +/- 21, 778 +/- 85, 630 +/- 50, and 560 +/- 55 mg/7 min, respectively). This effect was reduced 6 h, 2, and 7 days after an AV3V lesion (142 +/- 22, 113 +/- 32, and 290 +/- 62 mg/7 min, respectively), but not 15 days after an AV3V lesion (516 +/- 19 mg/7 min). I.c.v. injection of pilocarpine (120 mug in 1 muL), in sham-operated rats after 6 h, 2, 7, and 15 days also produced salivary secretion (443 +/- 20, 417 +/- 81, 496 +/- 14, and 427 +/- 47 mg/7 min, respectively). The effects of i.c.v. pilocarpine were also reduced 6 h, 2, and 7 days after an AV3V lesion (143 +/- 19, 273 +/- 14, and 322 +/- 17 mg/7 min, respectively), but not after 15 days (450 +/- 28 mg/7 min). The results demonstrate that the central nervous system, and particularly the AV3V region, is important for the effect of pilocarpine on salivary secretion in rats. Moreover, they suggest that activation of central pathways may play an important part in the salivary secretion to peripheral pilocarpine in rats.