971 resultados para 3D-Printing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objet Geometries Ltd entwickelt und produziert Rapid Prototyping Systeme und Materialien auf Basis der Polyjet-Technologie und bietet diese im internationalen Markt an. Objet ist der „Pionier“ in der Entwicklung der Polyjet-Technologie zur schnellen Erstellung von hochwertigen Modellen aus den 3D-Daten der Design- und CAx-Systeme. Die Oberflächenqualität, die schnelle Reinigung des Supportmaterials mit Hilfe eines Wasserstrahls, die Bauteilqualität hinsichtlich der Genauigkeit sowie die einfache Bedienung der Systeme zu einem hervorragenden Preis/Leistungsverhältnis zeichnen Objet als Marktführer dieser Technologie aus. Die Systeme von Objet sind insbesondere für den Anwender in Design und Engineering konzipiert und können in einer Büroumgebung betrieben werden. Die verwendeten Materialien sind für den Anwender ohne jegliche Gefahr einsetzbar und sind von einem deutschen Institut mit entsprechenden Zertifikaten dokumentiert. Die Produktlinie von Objet ermöglicht im Design und Engineering die Zeiten in der Produktentwicklung erheblich zu reduzieren. Kunden von Objet sind in Nordamerika, Europa, Asien und Australien zu finden, viele von ihnen sind bedeutende Unternehmen aus den Märkten Automobilindustrie, Elektronik/Elektrotechnik, Spielwaren, Medizin, Konsumerprodukte, Schuhindustrie, Schmuckindustrie und vielen anderen Branchen. Objet wurde 1998 gegründet und befindet sich im privaten Besitz. Das Unternehmen wird von Investoren wie der Scitex Corporation sowie von weiteren privaten Investoren, Unternehmer-Kapitalfonden and Kooperationen in USA, Japan, Europa und Israel unterstützt. Aus Wettbewerbsgründen werden Unternehmenszahlen derzeit nicht öffentlich zur Verfügung gestellt. Das Unternehmen beschäftigt zur Zeit weltweit ca. 75 Mitarbeiter und verfügt über eigene Vertriebs- und Servicecenter in den USA und Europa, sowie Vertriebspartnern in der ganzen Welt. Seit Mitte 2001 wurden über 170 Systeme weltweit vermarktet und installiert. Der Vortrag anlässlich der RapidTech wird diese noch recht „junge“ Technologie, deren Vorteile für den Anwender sowie die möglichen Applikationen an Hand von konkreten Beispielen im Detail erläutern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen rückt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten Öffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollständiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag verändern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch geprägt sind und sich nur punktuell auf Beispiele stützen. Dieser Beitrag geht von den Bedürfnissen der Menschen aus, wie sie z.B. in der Maslow’schen Bedürfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proyecto de Fin de Carrera de Ingenieria Industrial, versando sobre el completo diseño de una impresora 3D

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper details methodologies that have been explored for the fast proofing of on-chip architectures for Circular Dichroism techniques. Flow-cell devices fabricated from UV transparent Quartz are used for these experiments. The complexity of flow-cell production typically results in lead times of six months from order to delivery. Only at that point can the on-chip architecture be tested empirically and any required modifications determined ready for the next six month iteration phase. By using the proposed 3D printing and PDMS moulding techniques for fast proofing on-chip architectures the optimum design can be determined within a matter of hours prior to commitment to quartz chip production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As complex radiotherapy techniques become more readily-practiced, comprehensive 3D dosimetry is a growing necessity for advanced quality assurance. However, clinical implementation has been impeded by a wide variety of factors, including the expense of dedicated optical dosimeter readout tools, high operational costs, and the overall difficulty of use. To address these issues, a novel dry-tank optical CT scanner was designed for PRESAGE 3D dosimeter readout, relying on 3D printed components and omitting costly parts from preceding optical scanners. This work details the design, prototyping, and basic commissioning of the Duke Integrated-lens Optical Scanner (DIOS).

The convex scanning geometry was designed in ScanSim, an in-house Monte Carlo optical ray-tracing simulation. ScanSim parameters were used to build a 3D rendering of a convex ‘solid tank’ for optical-CT, which is capable of collimating a point light source into telecentric geometry without significant quantities of refractive-index matched fluid. The model was 3D printed, processed, and converted into a negative mold via rubber casting to produce a transparent polyurethane scanning tank. The DIOS was assembled with the solid tank, a 3W red LED light source, a computer-controlled rotation stage, and a 12-bit CCD camera. Initial optical phantom studies show negligible spatial inaccuracies in 2D projection images and 3D tomographic reconstructions. A PRESAGE 3D dose measurement for a 4-field box treatment plan from Eclipse shows 95% of voxels passing gamma analysis at 3%/3mm criteria. Gamma analysis between tomographic images of the same dosimeter in the DIOS and DLOS systems show 93.1% agreement at 5%/1mm criteria. From this initial study, the DIOS has demonstrated promise as an economically-viable optical-CT scanner. However, further improvements will be necessary to fully develop this system into an accurate and reliable tool for advanced QA.

Pre-clinical animal studies are used as a conventional means of translational research, as a midpoint between in-vitro cell studies and clinical implementation. However, modern small animal radiotherapy platforms are primitive in comparison with conventional linear accelerators. This work also investigates a series of 3D printed tools to expand the treatment capabilities of the X-RAD 225Cx orthovoltage irradiator, and applies them to a feasibility study of hippocampal avoidance in rodent whole-brain radiotherapy.

As an alternative material to lead, a novel 3D-printable tungsten-composite ABS plastic, GMASS, was tested to create precisely-shaped blocks. Film studies show virtually all primary radiation at 225 kVp can be attenuated by GMASS blocks of 0.5cm thickness. A state-of-the-art software, BlockGen, was used to create custom hippocampus-shaped blocks from medical image data, for any possible axial treatment field arrangement. A custom 3D printed bite block was developed to immobilize and position a supine rat for optimal hippocampal conformity. An immobilized rat CT with digitally-inserted blocks was imported into the SmART-Plan Monte-Carlo simulation software to determine the optimal beam arrangement. Protocols with 4 and 7 equally-spaced fields were considered as viable treatment options, featuring improved hippocampal conformity and whole-brain coverage when compared to prior lateral-opposed protocols. Custom rodent-morphic PRESAGE dosimeters were developed to accurately reflect these treatment scenarios, and a 3D dosimetry study was performed to confirm the SmART-Plan simulations. Measured doses indicate significant hippocampal sparing and moderate whole-brain coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of different approaches have been employed to enableimplantation of electronic medical microdevices. A novel method of producing low-cost, rapidly fabricated implantable enclosures from biocompatible silicone is presented in this paper. This method utilises 3D computer-aided design software to design and model the enclosures prior to fabrication. The enclosures are then fabricated through additive manufacturing from biocompatible silicone using a 3D bioprinter. In this paper, four different implantable enclosure designs are presented. A prototyping stage with three different prototypes is described, these prototype enclosures are then evaluated through submersion and operation tests. A final design is developed in response to the obtained results, and then evaluated in a long term temperature controlled submersion test. The evaluation results are presented and discussed.Several areas of future works are identified and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this report is to create the foundation for further study of a market-based approach to 3D printing as an instrument for economic development in Ghana. The delivery of improved products and services to the most underserved markets is needed to spur economic activity and improve standards of living. The relationship between economic development and the advancement of technology is considered within the context of Ghana. An opportunity for market entry exists within both the bottom of the economic pyramid and the mid-segment market. 3D printing (additive manufacturing) has proven to be a disruptive technology that has demonstrated an ability to expedite the speed of innovations and create products that were previously not possible. An investigation of how 3D printers can be used to create improved products for the most underserved markets within Ghana is presented. Questions are asked to elucidate how and when adoption of 3D printers and 3D printed products may occur in the future. Based upon the existing barriers to adoption, 3D printing technology must improve before widespread adoption will occur in Ghana.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

3D printing (3Dp) has long been used in the manufacturing sector as a way to automate, accelerate production and reduce waste materials. It is able to build a wide variety of objects if the necessary specifications are provided to the printer and no problems are presented by the limited range of materials available. With 3Dp becoming cheaper, more reliable and, as a result, more prevalent in the world at large, it may soon make inroads into the construction industry. Little is known however, of 3Dp in current use the construction industry and its potential for the future and this paper seeks to rectify this situation by providing a review of the relevant literature. In doing this, the three main 3Dp methods of contour crafting, concrete printing and D-shape 3Dp are described which, as opposed to the traditional construction method of cutting materials down to size, deliver only what is needed for completion, vastly reducing waste. Also identified is 3Dp’s potential to enable buildings to be constructed many times faster and with significantly reduced labour costs. In addition, it is clear that construction 3Dp can allow the further inclusion of Building Information Modelling into the construction process - streamlining and improving the scheduling requirements of a project. However, current 3Dp processes are known to be costly, unsuited to large-scale products and conventional design approaches, and have a very limited range of materials that can be used. Moreover, the only successful examples of construction in action to date have occurred in controlled laboratory environments and, as real world trials have yet to be completed, it is yet to be seen whether it can be it equally proficient in practical situations. Key Words: 3D Printing; Contour Crafting; Concrete Printing; D-shape; Building Automation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study used the specific example of 3D printing with acrylonitrile butadiene styrene (ABS) as a means to investigate the potential usefulness of benchtop rapid prototyping as a technique for producing patient specific phantoms for radiotherapy dosimetry. Three small cylinders and one model of a human lung were produced via in-house 3D printing with ABS, using 90%, 50%, 30% and 10% ABS infill densities. These phantom samples were evaluated in terms of their geometric accuracy, tissue equivalence and radiation hardness, when irradiated using a range of clinical radiotherapy beams. The measured dimensions of the small cylindrical phantoms all matched their planned dimensions, within 1mm. The lung phantom was less accurately matched to the lung geometry on which it was based, due to simplifications introduced during the phantom design process. The mass densities, electron densities and linear attenuation coefficients identified using CT data, as well as the results of film measurements made using megavoltage photon and electron beams, indicated that phantoms printed with ABS, using infill densities of 30% or more, are potentially useful as lung- and tissue-equivalent phantoms for patient-specific radiotherapy dosimetry. All cylindrical 3D printed phantom samples were found to be unaffected by prolonged radiation and to accurately match their design specifications. However, care should be taken to avoid oversimplifying anatomical structures when printing more complex phantoms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EU]Hiru dimentsioko inprimaketa etorkizun handiko teknologia bezala azaltzen zaigu gaur egun. Esate baterako, biomedikuntza arloan aukera berritzaileak ekar ditzake, baina baita hezkuntza, heziketa eta ikerketa munduetan ere. Teknologia berri honen abantailarik nagusiena prototipatze azkarrean datza, eta honi esker, mikro- eta makro- egitura definituak dituzten objektuak diseinatu eta fabrikatu daitezke modu lehiakorrean. Lan honen helburua 3D inprimagailu baten bitartez inprimaturiko polimero biobateragarri eta biodegradagarrietan oinarrituriko ereduen garapen eta fabrikazioan datza. Hala ere, lehenik eta behin, lehengaiak bai fisikoki eta bai termikoki karakterizatu behar dira, ondoren, 3D inprimagailuaren parametroen arteko erlazioa ezarri, eta azkenik, produktu finalaren egitura propietateak eta kalitatea aztertu. Aipaturiko lana aurrera eramateko erabili den materiala polilaktida (PLA) izan da, zeinen erabilera oso zabaldua dagoen medikuntza arloan inplante (torloju, iltze, plaka eta abar) moduan eta ehun ingeniaritzaren munduan.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The process of making replicas of heritage has traditionally been developed by public agencies, corporations and museums and is not commonly used in schools. Currently there are technologies that allow creating cheap replicas. The new 3D reconstruction software, based on photographs and low cost 3D printers allow to make replicas at a cost much lower than traditional. This article describes the process of creating replicas of the sculpture Goslar Warrior of artist Henry Moore, located in Santa Cruz de Tenerife. To make this process, first, a digital model have been created using Autodesk Recap 360, Autodesk 123D Catch and Autodesk Meshmixer MarkerBot MakerWare applications. Physical replication, has been reproduced in polylactic acid (PLA) by MakerBot Replicator 2 3D printer. In addition, a cost analysis using, in one hand, the printer mentioned, and in the other hand, 3D printing services both online and local, is included. Finally, there has been a specific action with 141 students and 12 high school teachers, who filled a questionnary about the use of sculptural replicas in education.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.