948 resultados para 3D volumetric reconstruction
Resumo:
The proliferation of video games and other applications of computer graphics in everyday life demands a much easier way to create animatable virtual human characters. Traditionally, this has been the job of highly skilled artists and animators that painstakingly model, rig and animate their avatars, and usually have to tune them for each application and transmission/rendering platform. The emergence of virtual/mixed reality environments also calls for practical and costeffective ways to produce custom models of actual people. The purpose of the present dissertation is bringing 3D human scanning closer to the average user. For this, two different techniques are presented, one passive and one active. The first one is a fully automatic system for generating statically multi-textured avatars of real people captured with several standard cameras. Our system uses a state-of-the-art shape from silhouette technique to retrieve the shape of subject. However, to deal with the lack of detail that is common in the facial region for these kind of techniques, which do not handle concavities correctly, our system proposes an approach to improve the quality of this region. This face enhancement technique uses a generic facial model which is transformed according to the specific facial features of the subject. Moreover, this system features a novel technique for generating view-independent texture atlases computed from the original images. This static multi-texturing system yields a seamless texture atlas calculated by combining the color information from several photos. We suppress the color seams due to image misalignments and irregular lighting conditions that multi-texturing approaches typically suffer from, while minimizing the blurring effect introduced by color blending techniques. The second technique features a system to retrieve a fully animatable 3D model of a human using a commercial depth sensor. Differently to other approaches in the current state of the art, our system does not require the user to be completely still through the scanning process, and neither the depth sensor is moved around the subject to cover all its surface. Instead, the depth sensor remains static and the skeleton tracking information is used to compensate the user’s movements during the scanning stage. RESUMEN La popularización de videojuegos y otras aplicaciones de los gráficos por ordenador en el día a día requiere una manera más sencilla de crear modelos virtuales humanos animables. Tradicionalmente, estos modelos han sido creados por artistas profesionales que cuidadosamente los modelan y animan, y que tienen que adaptar específicamente para cada aplicación y plataforma de transmisión o visualización. La aparición de los entornos de realidad virtual/mixta aumenta incluso más la demanda de técnicas prácticas y baratas para producir modelos 3D representando personas reales. El objetivo de esta tesis es acercar el escaneo de humanos en 3D al usuario medio. Para ello, se presentan dos técnicas diferentes, una pasiva y una activa. La primera es un sistema automático para generar avatares multi-texturizados de personas reales mediante una serie de cámaras comunes. Nuestro sistema usa técnicas del estado del arte basadas en shape from silhouette para extraer la forma del sujeto a escanear. Sin embargo, este tipo de técnicas no gestiona las concavidades correctamente, por lo que nuestro sistema propone una manera de incrementar la calidad en una región del modelo que se ve especialmente afectada: la cara. Esta técnica de mejora facial usa un modelo 3D genérico de una cara y lo modifica según los rasgos faciales específicos del sujeto. Además, el sistema incluye una novedosa técnica para generar un atlas de textura a partir de las imágenes capturadas. Este sistema de multi-texturización consigue un atlas de textura sin transiciones abruptas de color gracias a su manera de mezclar la información de color de varias imágenes sobre cada triángulo. Todas las costuras y discontinuidades de color debidas a las condiciones de iluminación irregulares son eliminadas, minimizando el efecto de desenfoque de la interpolación que normalmente introducen este tipo de métodos. La segunda técnica presenta un sistema para conseguir un modelo humano 3D completamente animable utilizando un sensor de profundidad. A diferencia de otros métodos del estado de arte, nuestro sistema no requiere que el usuario esté completamente quieto durante el proceso de escaneado, ni mover el sensor alrededor del sujeto para cubrir toda su superficie. Por el contrario, el sensor se mantiene estático y el esqueleto virtual de la persona, que se va siguiendo durante el proceso, se utiliza para compensar sus movimientos durante el escaneado.
Resumo:
Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.
Resumo:
Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6× compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.
Resumo:
In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La maladie des artères périphériques (MAP) se manifeste par une réduction (sténose) de la lumière de l’artère des membres inférieurs. Elle est causée par l’athérosclérose, une accumulation de cellules spumeuses, de graisse, de calcium et de débris cellulaires dans la paroi artérielle, généralement dans les bifurcations et les ramifications. Par ailleurs, la MAP peut être causée par d`autres facteurs associés comme l’inflammation, une malformation anatomique et dans de rares cas, au niveau des artères iliaques et fémorales, par la dysplasie fibromusculaire. L’imagerie ultrasonore est le premier moyen de diagnostic de la MAP. La littérature clinique rapporte qu’au niveau de l’artère fémorale, l’écho-Doppler montre une sensibilité de 80 à 98 % et une spécificité de 89 à 99 % à détecter une sténose supérieure à 50 %. Cependant, l’écho-Doppler ne permet pas une cartographie de l’ensemble des artères des membres inférieurs. D’autre part, la reconstruction 3D à partir des images échographiques 2D des artères atteintes de la MAP est fortement opérateur dépendant à cause de la grande variabilité des mesures pendant l’examen par les cliniciens. Pour planifier une intervention chirurgicale, les cliniciens utilisent la tomodensitométrie (CTA), l’angiographie par résonance magnétique (MRA) et l’angiographie par soustraction numérique (DSA). Il est vrai que ces modalités sont très performantes. La CTA montre une grande précision dans la détection et l’évaluation des sténoses supérieures à 50 % avec une sensibilité de 92 à 97 % et une spécificité entre 93 et 97 %. Par contre, elle est ionisante (rayon x) et invasive à cause du produit de contraste, qui peut causer des néphropathies. La MRA avec injection de contraste (CE MRA) est maintenant la plus utilisée. Elle offre une sensibilité de 92 à 99.5 % et une spécificité entre 64 et 99 %. Cependant, elle sous-estime les sténoses et peut aussi causer une néphropathie dans de rares cas. De plus les patients avec stents, implants métalliques ou bien claustrophobes sont exclus de ce type d`examen. La DSA est très performante mais s`avère invasive et ionisante. Aujourd’hui, l’imagerie ultrasonore (3D US) s’est généralisée surtout en obstétrique et échocardiographie. En angiographie il est possible de calculer le volume de la plaque grâce à l’imagerie ultrasonore 3D, ce qui permet un suivi de l’évolution de la plaque athéromateuse au niveau des vaisseaux. L’imagerie intravasculaire ultrasonore (IVUS) est une technique qui mesure ce volume. Cependant, elle est invasive, dispendieuse et risquée. Des études in vivo ont montré qu’avec l’imagerie 3D-US on est capable de quantifier la plaque au niveau de la carotide et de caractériser la géométrie 3D de l'anastomose dans les artères périphériques. Par contre, ces systèmes ne fonctionnent que sur de courtes distances. Par conséquent, ils ne sont pas adaptés pour l’examen de l’artère fémorale, à cause de sa longueur et de sa forme tortueuse. L’intérêt pour la robotique médicale date des années 70. Depuis, plusieurs robots médicaux ont été proposés pour la chirurgie, la thérapie et le diagnostic. Dans le cas du diagnostic artériel, seuls deux prototypes sont proposés, mais non commercialisés. Hippocrate est le premier robot de type maitre/esclave conçu pour des examens des petits segments d’artères (carotide). Il est composé d’un bras à 6 degrés de liberté (ddl) suspendu au-dessus du patient sur un socle rigide. À partir de ce prototype, un contrôleur automatisant les déplacements du robot par rétroaction des images échographiques a été conçu et testé sur des fantômes. Le deuxième est le robot de la Colombie Britannique conçu pour les examens à distance de la carotide. Le mouvement de la sonde est asservi par rétroaction des images US. Les travaux publiés avec les deux robots se limitent à la carotide. Afin d’examiner un long segment d’artère, un système robotique US a été conçu dans notre laboratoire. Le système possède deux modes de fonctionnement, le mode teach/replay (voir annexe 3) et le mode commande libre par l’utilisateur. Dans ce dernier mode, l’utilisateur peut implémenter des programmes personnalisés comme ceux utilisés dans ce projet afin de contrôler les mouvements du robot. Le but de ce projet est de démontrer les performances de ce système robotique dans des conditions proches au contexte clinique avec le mode commande libre par l’utilisateur. Deux objectifs étaient visés: (1) évaluer in vitro le suivi automatique et la reconstruction 3D en temps réel d’une artère en utilisant trois fantômes ayant des géométries réalistes. (2) évaluer in vivo la capacité de ce système d'imagerie robotique pour la cartographie 3D en temps réel d'une artère fémorale normale. Pour le premier objectif, la reconstruction 3D US a été comparée avec les fichiers CAD (computer-aided-design) des fantômes. De plus, pour le troisième fantôme, la reconstruction 3D US a été comparée avec sa reconstruction CTA, considéré comme examen de référence pour évaluer la MAP. Cinq chapitres composent ce mémoire. Dans le premier chapitre, la MAP sera expliquée, puis dans les deuxième et troisième chapitres, l’imagerie 3D ultrasonore et la robotique médicale seront développées. Le quatrième chapitre sera consacré à la présentation d’un article intitulé " A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of B-mode images" qui résume les résultats obtenus dans ce projet de maîtrise. Une discussion générale conclura ce mémoire. L’article intitulé " A 3D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility " de Marie-Ange Janvier et al dans l’annexe 3, permettra également au lecteur de mieux comprendre notre système robotisé. Ma contribution dans cet article était l’acquisition des images mode B, la reconstruction 3D et l’analyse des résultats pour le patient sain.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: The aim of this paper is to demonstrate that computed tomography (CT) and three-dimensional (3D) CT imaging techniques can be useful tools for evaluating gunshot wounds of the skull in forensic medicine. Three purposes can be achieved: (1) identifying and recognising the bullet entrance wound - and exit wound, if present; (2) recognising the bullet's intracranial course by studying damage to bone and brain tissue; (3) suggesting hypotheses as to the dynamics of the event. MATERIALS AND METHODS: Ten cadavers of people who died of a fatal head injury caused by a single gunshot were imaged with total-body CT prior to conventional autoptic examination. Three-dimensional-CT reconstructions were obtained with the volume-rendering technique, and data were analysed by two independent observers and compared with autopsy results. RESULTS: In our experience, CT analysis and volumetric reconstruction techniques allowed the identification of the bullet entrance and exit wounds and intracranial trajectory, as well as helping to formulate a hypothesis on the extracranial trajectory to corroborate circumstantial evidence. CONCLUSIONS: CT imaging techniques are excellent tools for addressing the most important questions of forensic medicine in the case of gunshot wounds of the skull, with results as good as (or sometimes better than) traditional autoptic methods.