859 resultados para 3D feature extraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two algorithms for smoothing and feature extraction for fingerprint classification. Deutsch's(2) Thinning algorithm (rectangular array) is used for thinning the digitized fingerprint (binary version). A simple algorithm is also suggested for classifying the fingerprints. Experimental results obtained using such algorithms are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of 3D modeling of Human Face in Face Recognition systems, User Interfaces, Graphics, Gaming and the like has made it an area of active study. Majority of the 3D sensors rely on color coded light projection for 3D estimation. Such systems fail to generate any response in regions covered by Facial Hair (like beard, mustache), and hence generate holes in the model which have to be filled manually later on. We propose the use of wavelet transform based analysis to extract the 3D model of Human Faces from a sinusoidal white light fringe projected image. Our method requires only a single image as input. The method is robust to texture variations on the face due to space-frequency localization property of the wavelet transform. It can generate models to pixel level refinement as the phase is estimated for each pixel by a continuous wavelet transform. In cases of sparse Facial Hair, the shape distortions due to hairs can be filtered out, yielding an estimate for the underlying face. We use a low-pass filtering approach to estimate the face texture from the same image. We demonstrate the method on several Human Faces both with and without Facial Hairs. Unseen views of the face are generated by texture mapping on different rotations of the obtained 3D structure. To the best of our knowledge, this is the first attempt to estimate 3D for Human Faces in presence of Facial hair structures like beard and mustache without generating holes in those areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature extraction in bilingual OCR is handicapped by the increase in the number of classes or characters to be handled. This is evident in the case of Indian languages whose alphabet set is large. It is expected that the complexity of the feature extraction process increases with the number of classes. Though the determination of the best set of features that could be used cannot be ascertained through any quantitative measures, the characteristics of the scripts can help decide on the feature extraction procedure. This paper describes a hierarchical feature extraction scheme for recognition of printed bilingual (Tamil and Roman) text. The scheme divides the combined alphabet set of both the scripts into subsets by the extraction of certain spatial and structural features. Three features viz geometric moments, DCT based features and Wavelet transform based features are extracted from the grouped symbols and a linear transformation is performed on them for the purpose of efficient representation in the feature space. The transformation is obtained by the maximization of certain criterion functions. Three techniques : Principal component analysis, maximization of Fisher's ratio and maximization of divergence measure have been employed to estimate the transformation matrix. It has been observed that the proposed hierarchical scheme allows for easier handling of the alphabets and there is an appreciable rise in the recognition accuracy as a result of the transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work applies a variety of multilinear function factorisation techniques to extract appropriate features or attributes from high dimensional multivariate time series for classification. Recently, a great deal of work has centred around designing time series classifiers using more and more complex feature extraction and machine learning schemes. This paper argues that complex learners and domain specific feature extraction schemes of this type are not necessarily needed for time series classification, as excellent classification results can be obtained by simply applying a number of existing matrix factorisation or linear projection techniques, which are simple and computationally inexpensive. We highlight this using a geometric separability measure and classification accuracies obtained though experiments on four different high dimensional multivariate time series datasets. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic sensors are widely used to detect moving target in ground sensor networks. Footstep detection is very important for security surveillance and other applications. Because of non-stationary characteristic of seismic signal and complex environment conditions, footstep detection is a very challenging problem. A novel wavelet denoising method based on singular value decomposition is used to solve these problems. The signal-to-noise ratio (SNR) of raw footstep signal is greatly improved using this strategy. The feature extraction method is also discussed after denosing procedure. Comparing, with kurtosis statistic feature, the wavelet energy feature is more promising for seismic footstep detection, especially in a long distance surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subspace learning is the process of finding a proper feature subspace and then projecting high-dimensional data onto the learned low-dimensional subspace. The projection operation requires many floating-point multiplications and additions, which makes the projection process computationally expensive. To tackle this problem, this paper proposes two simple-but-effective fast subspace learning and image projection methods, fast Haar transform (FHT) based principal component analysis and FHT based spectral regression discriminant analysis. The advantages of these two methods result from employing both the FHT for subspace learning and the integral vector for feature extraction. Experimental results on three face databases demonstrated their effectiveness and efficiency.