999 resultados para 392.3
Resumo:
Neujahrsglückwünsche (Gedicht), Geschenk von Richard Oppenheimer
Resumo:
Twenty per cent of sentinel lymph node (SLN)-positive melanoma patients have positive non-SLN lymph nodes in completion lymph node dissection (CLND). We investigated SLN tumour load, non-sentinel positivity and disease-free survival (DFS) to assess whether certain patients could be spared CLND. Sentinel lymph node biopsy was performed on 392 patients between 1999 and 2005. Median observation period was 38.8 months. Sentinel lymph node tumour load did not predict non-SLN positivity: 30.8% of patients with SLN macrometastases (> or =2 mm) and 16.4% with micrometastases (< or =2 mm) had non-SLN positivity (P=0.09). Tumour recurrences after positive SLNs were more than twice as frequent for SLN macrometastases (51.3%) than for micrometastases (24.6%) (P=0.005). For patients with SLN micrometastases, the DFS analysis was worse (P=0.003) when comparing those with positive non-SLNs (60% recurrences) to those without (17.6% recurrences). This difference did not translate into significant differences in DFS: patients with SLN micrometastasis, either with (P=0.022) or without additional positive non-SLNs (P<0.0001), fared worse than patients with tumour-free SLNs. The 2-mm cutoff for SLN tumour load accurately predicts differences in DFS. Non-SLN positivity in CLND, however, cannot be predicted. Therefore, contrary to other studies, no recommendations concerning discontinuation of CLND based on SLN tumour load can be deduced.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
AIMS Loss-of-function mutations in the SCN5A-encoded sodium channel SCN5A or Nav1.5 have been identified in idiopathic ventricular fibrillation (IVF) in the absence of Brugada syndrome phenotype. Nav1.5 is regulated by four sodium channel auxiliary beta subunits. Here, we report a case with IVF and a novel mutation in the SCN3B-encoded sodium channel beta subunit Navbeta3 that causes a loss of function of Nav1.5 channels in vitro. METHODS AND RESULTS Comprehensive open reading frame mutational analysis of KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, GPD1L, four sodium channel beta subunit genes (SCN1-4B), and targeted scan of RYR2 was performed. A novel missense mutation, Navbeta3-V54G, was identified in a 20-year-old male following witnessed collapse and defibrillation from VF. The ECG exhibited epsilon waves, and imaging studies demonstrated a structurally normal heart. The mutated residue was highly conserved across species, localized to the Navbeta3 extracellular domain, and absent in 800 reference alleles. We found that HEK-293 cells had endogenous Navbeta3, but COS cells did not. Co-expression of Nav1.5 with Navbeta3-V54G (with or without co-expression of the Navbeta1 subunit) in both HEK-293 cells and COS cells revealed a significant decrease in peak sodium current and a positive shift of inactivation compared with WT. Co-immunoprecipitation experiments showed association of Navbeta3 with Nav1.5, and immunocytochemistry demonstrated a dramatic decrease in trafficking to the plasma membrane when co-expressed with mutant Navbeta3-V54G. CONCLUSION This study provides molecular and cellular evidence implicating mutations in Navbeta3 as a cause of IVF.
Resumo:
u.a.: Verkauf der Ländereien in Danzig; Margarethe Schnepp; David Asher; Karl Georg Bähr; Jules Lunteschütz;
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.
Resumo:
The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.