995 resultados para 39-355


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inoceramus is an epibenthic bivalve which lived in a wide variety of paleoenvironments encompassing a broad range of paleodepths. A survey of all Cretaceous sediments from Deep Sea Drilling Project legs 1-69 and 75 revealed over 500 Inoceramus specimens at twenty sites. Of these, 47 well-preserved Late Cretaceous specimens from the South Atlantic, Pacific and Indian Oceans were analyzed for oxygen and carbon isotopes. The specimens exhibit small internal isotopic variability and oxygen isotopic paleotemperatures that are consistent with a deep-sea habitat. Paleotemperatures ranging from 5 to 16°C show that Late Cretaceous oceans were significantly warmer than the present oceans. The data suggest that deep water was formed both by cooling at high latitudes and by evaporation in the subtropics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data on analyses of chemical composition of DSDP samples of bottom sediments and rocks carried out in P.P. Shirshov Institute of Oceanology are reported. Basal sediments and sedimentary rocks prevail in the sample set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inoceramus occurs in every DSDP hole that penetrated Cretaceous sediments in the South Atlantic Ocean, and specimen occurrence has been mapped in detail for each core. Oxygen and carbon isotope measurements were completed on 18 Inoceramus specimens from Hole 530A. Textural evidence of diagenesis is accompanied by depletion in 18O. Paleotemperature results were obtained from 11 well-preserved specimens. Bottom water temperatures in the Angola Basin decreased from 23°C during the Coniacian to 13°C near the end of the Campanian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El interés de este estudio de caso es estudiar los efectos que produce una sentencia de la Corte Constitucional de Colombia en la división de poderes con el objetivo de mostrar que por medio del ejercicio de sus funciones la Corte se extralimita y produce efectos negativos desde un punto de vista orgánico puesto que se toma funciones orgánicas de la Rama legislativa. Sin embargo desde un punto de vista funcional estas extralimitaciones pueden verse de una forma positiva. Para esto se estudia la sentencia C-355/2006 puesto que su contenido vinculante permite ver como es afectada la división de poderes desde ambos puntos de vista.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El 10 de mayo de 2006, la Corte Constitucional de Colombia produjo un fallo histórico a favor de los derechos humanos de las mujeres en el país. Mediante la Sentencia C-355/06 del 10 de mayo de 2006, la Sala Plena del Tribunal Constitucional decidió despenalizar la práctica del aborto en tres circunstancias específicas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.