953 resultados para 320502 Basic Pharmacology
Resumo:
In humans, hydromorphone (HMOR) is metabolised principally by conjugation with glucuronic acid to form hydromorphone-3-glucuronide (H3G), a close structural analogue of morphine-3-glucuronide (M3G), the major metabolite of morphine. In a previous study we described the biochemical synthesis of H3G together with a preliminary evaluation of its pharmacology which revealed that it is a neuro-excitant in rats in a manner analogous to M3G. Thus the aims of the current study were to quantify the neuro-excitatory behaviours evoked by intracerebroventricular (icv) H3G in the rat and to define its potency relative to M3G. Groups of adult male Sprague-Dawley rats received icy injections (1 muL) of H3G (1 - 3 mug), M3G (2 - 7 mug) or vehicle via a stainless steel guide cannula that had been implanted stereotaxically seven days prior to drug administration. Behavioural excitation was monitored by scoring fifteen different behaviours (myoclonic jerks, chewing, wet-dog-shakes, rearing, tonic-clonic-convulsions, explosive motor behaviour, grooming, exploring, general activity, eating, staring, ataxia, righting reflex, body posture, touch evoked agitation) immediately prior to icy injection and at the following post-dosing times: 5, 15, 25, 35, 50, 65 and 80 min. H3G produced dose-dependent behavioural excitation in a manner analogous to that reported previously for M3G by our laboratory and reproduced herein. H3G was found to be approximately 2.5-fold more potent than M3G, such that the mean (+/- S.D.) ED50 values were 2.3 (+/- 0.1) mug and 6.1 (+/- 0.6) mug respectively. Thus, our data clearly imply that if H3G crosses the BBB with equivalent efficiency to M3G, then the myoclonus, allodynia and seizures observed in some patients dosed chronically with large systemic doses of HMOR, are almost certainly due to the accumulation of sufficient H3G in the central nervous system, to evoke behavioural excitation. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The effects of the recently identified human peptide urotensin-II (hU-II) were investigated on human cardiac muscle contractility and coronary artery tone. In right atrial trabeculae from non-failing hearts, hU-II caused a concentration-dependent increase in contractile force (pEC(50)=9.5+/-0.1; E-max= 31.3+/-4.8% compared to 9.25 mM Ca2+; n = 9) with no change in contraction duration. In right ventricular trabeculae from explanted hearts, 20 nM hU-II caused a small increase in contractile force (7.8+/-1.4% compared to 9.25 mM Ca2+; n= 3/6 tissues from 2 out of 4 patients). The peptide caused arrhythmic contractions in 3/26 right atrial trabeculae from 3/9 patients in an experimental model of arrhythmia and therefore has less potential to cause arrhythmias than ET-1. hU-II (20 nM) increased tone (17.9% of the response to 90 mM KCI) in 7/7 tissues from 1 patient, with no response detected in 8/8 tissues from 2 patients. hU-II is a potent cardiac stimulant with low efficacy.
Resumo:
1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.
Resumo:
The present study estimated the population pharmacokinetics of lamotrigine in patients receiving oral lamotrigine therapy with drug concentration monitoring, and determined intersubject and intrasubject variability. A total of 129 patients were analyzed from two clinical sites. Of these, 124 patients provided spare data (198 concentration-time points); nine patients (four from a previous group plus five from the current group) provided rich data (431 points). The population analysis was conducted using P-PHARM (TM) (SIMED Scientific Software, Cedex, France), a nonlinear mixed-effect modeling program. A single exponential elimination model (first-order absorption) with heteroscedastic weighting was used. Apparent clearance (CL/F) and volume of distribution (V/F) were the pharmacokinetic parameters estimated. Covariate analysis was performed to determine which factors explained any of the variability associated with lamotrigine clearance. Population estimates of CL/F and V/F for lamotrigine generated in the final model were 2.14 +/- 0.81 L/h and 78.1 +/- 5.1 L/kg. Intersubject and intrasubject variability for clearance was 38% and 38%, respectively. The covariates of concomitant valproate and phenytoin therapy accounted for 42% of the intersubject variability of clearance. Age, gender, clinic site, and other concomitant antiepileptic drugs did not influence clearance. This study of the population pharmacokinetics of lamotrigine in patients using the drug clinically provides useful data and should lead to better dosage individualization for lamotrigine.
Resumo:
Renal drug elimination is determined by glomerular filtration, tubular secretion, and tubular reabsorption. Changes in the integrity of these processes influence renal drug clearance, and these changes may not be detected by conventional measures of renal function such as creatinine clearance. The aim of the current study was to examine the analytic issues needed to develop a cocktail of marker drugs (fluconazole, rac-pindolol, para-aminohippuric acid, sinistrin) to measure simultaneously the mechanisms contributing to renal clearance. High-performance liquid chromatographic methods of analysis for fluconazole, pindolol, para-aminohippuric acid, and creatinine and an enzymatic assay for sinistrin were developed or modified and then validated to allow determination of each of the compounds in both plasma and urine in the presence of all other marker drugs. A pilot clinical study in one volunteer was conducted to ensure that the assays were suitable for quantitating all the marker drugs to the sensitivity and specificity needed to allow accurate determination of individual renal clearances. The performance of all assays (plasma and urine) complied with published validation criteria. All standard curves displayed linearity over the concentration ranges required, with coefficients of correlation greater than 0.99. The precision of the interday and intraday variabilities of quality controls for each marker in plasma and urine were all less than 11.9% for each marker. Recoveries of markers (and internal standards) in plasma and urine were all at least 90%. All markers investigated were shown to be stable when plasma or urine was frozen and thawed. For all the assays developed, there were no interferences from other markers or endogenous substances. In a pilot clinical study, concentrations of all markers could be accurately and reproducibly determined for a sufficient duration of time after administration to calculate accurate renal clearance for each marker. This article presents details of the analytic techniques developed for measuring concentrations of marker drugs for different renal elimination processes administered as a single dose to define the processes contributing to renal drug elimination.
Resumo:
1. Recent findings have suggested a significant involvement of the immune system in the control of pain. Immune cells contain opioid peptides that are released within inflamed tissue and act at opioid receptors on peripheral sensory nerve endings. It is also apparent that different types of lymphocytes contain P-endorphin, memory T cells containing more beta -endorphin than naive cells. 2. These findings highlight an integral link between immune cell migration and inflammatory pain, The present review highlights immune system involvement in the site-directed control of inflammatory pain. 3. Full-length mRNA transcripts for opioid precursor proteins are expressed in immune cells. Increased expression of pro-opiomelanocortin mRNA and beta -endorphin has been demonstrated in stimulated lymphocytes and lymphocytes from animals with inflammation. 4. Cytokines and corticotropin-releasing factor (CRF) release opioids from immune cells, Potent peripheral analgesia due to direct injection of CRF can be blocked by antagonists to CRF, antibodies to opioid peptides, antisense to CRF and opioid receptor-specific antagonists. The release of opioid peptides from lymphocytes is calcium dependent and opioid receptor specific. Furthermore, endogenous sources of opioid peptides produce potent analgesia when implanted into the spinal cord. 5. Activated immune cells migrate directly to inflamed tissue using cell adhesion molecules to adhere to the epithelial surface of the vasculature in inflamed tissue. Lymphocytes that have been activated can express opioid peptides, Memory type T cells that contain opioid peptides are present within inflamed tissue; naive cells are not present in inflamed tissue and do not contain opioid peptides, Inhibiting the migration of memory type T cells into inflamed tissue by blocking selectins results in reduced numbers of beta -endorphin containing cells, a reduced quantity of beta -endorphin in inflamed paws and reduced stress- and CRF-induced peripheral analgesia. 6. Immunosuppression is associated with increased pain in patients. Moreover, immunosuppression results in decreased lymphocyte numbers as well as decreased analgesia in animal models.
Resumo:
The cyclic C5a receptor antagonist, phenylalanine [L-ornithine-proline-D-cyclohexylalanine-tryptophan-arginine] (F-[OPchaWR]), has similar to 1000-fold less affinity for the C5a receptor (C5aR) on murine polymorphonuclear leukocytes than on human. Analysis of C5aR from different species shows that a possible cause of this difference is the variation in the sequence of the first extracellular loop of the receptor. The mouse receptor contains Y at a position analogous to P-103 in the human receptor, and D at G(105). To test this hypothesis, we expressed human C5aR mutants ((PY)-Y-103, G(105)D and the double mutant, (PY)-Y-103/G(105)D) in RBL-2H3 cells and investigated the effects of these mutations on binding affinity and receptor activation. All three mutant receptors had a higher affinity for human C5a than the wild-type receptor, but showed no significant difference in the ability of F-[OPchaWR] to inhibit human C5a binding. However, all of the mutant receptors had substantially lower affinities for the weak agonist, C5a des Arg(74) (C5adR(74)), and two altered receptors (G(105)D and (PY)-Y-103/G(105)D) had much lower affinities for the C-terminal C5a agonist peptide analogue, L-tyrosine-serine-phenylalanine-lysine-proline-methionine-proline-leucine-D-alanine-arginine (YSFKPMPLaR). Although it is unlikely that differences at these residues are responsible for variations in the potency of F-[OPchaWR] across species, residues in the first extracellular loop are clearly involved in the recognition of both C5a and C5a agonists. The complex effects of mutating these residues on the affinity and response to C5a, C5adR(74), and the peptide analogues provide evidence of different binding modes for these ligands on the C5aR. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Alcoholism is a major health problem in Western countries, yet relatively little is known about the mechanisms by which chronic alcohol abuse causes the pathologic changes associated with the disease. It is likely that chronic alcoholism affects a number of signaling cascades and transcription factors, which in turn result in distinct gene expression patterns. These patterns are difficult to detect by traditional experiments measuring a few mRNAs at a time, but are well suited to microarray analyses. We used cDNA microarrays to analyze expression of approximately 10 000 genes in the frontal and motor cortices of three groups of chronic alcoholic and matched control cases. A functional hierarchy was devised for classification of brain genes and the resulting groups were compared based on differential expression. Comparison of gene expression patterns in these brain regions revealed a selective reprogramming of gene expression in distinct functional groups. The most pronounced differences were found in myelin-related genes and genes involved in protein trafficking. Significant changes in the expression of known alcohol-responsive genes, and genes involved in calcium, cAMP, and thyroid signaling pathways were also identified. These results suggest that multiple pathways may be important for neuropathology and altered neuronal function observed in alcoholism.
Resumo:
The selective loss of neurones in a range of neurodegenerative diseases is widely thought to involve the process of excitotoxicity, in which glutamate-mediated neuronal killing is elaborated through the excessive stimulation of cell-surface receptors. Every such disease exhibits a distinct regional and subregional pattern of neuronal loss. so processes must be locally triggered to different extents to account for this. We have studied several mechanisms which could lead to excitotoxic glutamate pathophysiology and compared them in different diseases. Our data suggest that glutamate can reach toxic extracellular levels in Alzheimer disease by malfunctions in cellular transporters, and that the toxicity may be exacerbated by continued glutamate release from presynaptic neurones acting on hypersensitive postsynaptic receptors. Thus the excitotoxicity is direct. In contrast, alcoholic brain damage arises in regions where GABA-mediated inhibition is deficient, and fails properly to dampen trans-synaptic excitation, Thus the excitotoxicity is indirect. A variety of such mechanisms is possible, which may combine in different ways.
Resumo:
GABA(A) receptor sites were characterised in cerebral cortex tissue samples from deceased neurologically normal infants who had come to autopsy during the third trimester of pregnancy. Pharmacological parameters were obtained from homogenate binding studies which utilised the 'central-type' benzodiazepine ligands [H-3]diazepam and [H-3]flunitrazepam, and from the GABA activation of [H-3]diazepam binding. It was found that the two radioligands behaved differently during development. The affinity of [H-3]flunitrazepam for its binding site did not vary significantly between preparations, whereas the [H-3]diazepam K-D showed marked regional and developmental variations: infant tissues showed a distinctly lower affinity than adults for this ligand. The density of [H-3]flunitrazepam binding sites increased similar to35% during the third trimester to reach adult levels by term, whereas [H-3]diazepam binding capacity declined slightly but steadily throughout development. The GABA activation of [H-3]diazepam binding was less efficient early in the trimester, in that the affinity of the agonist was significantly lower, though it rose to adult levels by term. The strength of the enhancement response increased to adult levels over the same time-frame. The results strongly suggest that the subunit composition of cortical GABA(A) sites changes significantly during this important developmental stage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The pharmacology of the N -methyl-d-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer's disease cases and matched controls. The affinity and density of the [H-3]MK-801 binding site were delineated along with the enhancement of [H-3]MK-801 binding by glutamate and spermine. Maximal enhancement induced by either ligand was regionally variable; glutamate-mediated maximal enhancement was higher in controls than in Alzheimer's cases in pathologically spared regions, whereas spermine-mediated maximal enhancement was higher in controls in areas susceptible to pathological damage. These and other data suggest that the subunit composition of NMDA receptors may be locally variable. Studies with modified conantokin-G (con-G) peptides showed that Ala(7)-con-G had higher affinity than Lys(7)-con-G, and also defined two distinct binding sites in controls. Nevertheless, the affinity for Lys(7)-con-G was higher overall in Alzheimer's brain than in control brain, whereas the reverse was true for Ala(7)-con-G. Over-excitation mediated by specific NMDA receptors might contribute to localized brain damage in Alzheimer's disease. Modified conantokins are useful for identifying the NMDA receptors involved, and may have potential as protective agents.
Resumo:
Objective: To examine whether NKP608, a novel 1-benzoyl-2-benzyl-4-aminopiperidine NK1 receptor antagonist, inhibits substance P (SP)-induced airway plasma protein exudation in vivo. Material: Anaesthetised English shorthair guinea-pigs and Wistar rats. Treatment: Tachykinin peptides were applied topically onto the trachea and antagonists administered intravenously. Methods: Tracheal segments isolated in situ were perfused with saline and plasma-derived protein assayed in the perfusate. Results: SP (1 muM) caused plasma protein exudation, which was abolished by an NK1 antagonist (RP 67580, 1.75 mumol/kg) but unaffected by an NK2 antagonist (SR 48968, 1.75 mumol/kg) indicating the response is NK1-receptor-mediated. This was confirmed with a response to an NK1 agonist ([Sar(9), Met(O-2)(11)]-SP, 1 muM) but none to an NK2 agonist ([betaAla(8)]-neurokinin A(4-10), 1 muM). NKP608 inhibited SP responses with estimated ID50 values (mumol/kg) of 0.0044 (guinea-pigs) and 0.19 (rats). Conclusions: NKP608 is an antagonist in vivo of NK1 receptor-induced tracheal plasma protein exudation and is more potent in guinea-pigs than rats.