898 resultados para 3-18
Resumo:
The complex [Cu-II (theo)(2)(H2O)(3)].2H(2)O (theo = theophylline) was obtained from aqueous solution. The crystals belong to the monoclinic system, space group P2(1)/n, and are reflection twins about the (001) face. The structure was solved using data from a twinned crystal and refined to final R and R(W) values of 0.069 and 0.064, respectively. Copper has a square-pyramidal coordination with two thee molecules coordinating through N(7) at equatorial positions. The remaining sites are occupied by water molecules. O(6) of one of the thee molecules is at the other axial site at a longer distance of 3.18 Angstrom. This could lead to an alternate (4+1+1) octahedral coordination geometry for Cu-II. The packing is stabilized by stacking interactions between the theophylline moieties at an average separation of 3.46 Angstrom.
Resumo:
The preparation and direct observation of triplet 2,4-dimethylene-1,3- cyclobutanediyl (1), the non-Kekule isomer of benzene, is described. The biradical was generated by photolysis of 5,6-dimethylene-2,3- diazabicyclo[2.1.1]hex-2-ene (2) (which was synthesized in several steps from benzvalene) under cryogenic, matrix-isolation conditions. Biradical 1 was characterized by EPR spectroscopy (│D/hc│ =0.0204 cm^(-1), │E/hc│ =0.0028 cm^(-1)) and found to have a triplet ground state. The Δm_s= 2 transition displays hyperfine splitting attributed to a 7.3-G coupling to the ring methine and a 5.9-G coupling to the exocyclic methylene protons. Several experiments, including application of the magnetophotoselection (mps) technique in the generation of biradical 1, have allowed a determination of the zero-field triplet sublevels as x = -0.0040, y = +0.0136, and z = -0.0096 cm^(-1), where x and y are respectively the long and short in-plane axes and z the out-of-plane axis of 1.
Triplet 1 is yellow-orange and displays highly structured absorption (λ_(max)= 506 nm) and fluorescence (λ_(max) = 510 nm) spectra, with vibronic spacings of 1520 and 620 cm^(-1) for absorption and 1570 and 620 cm^(-1) for emission. The spectra were unequivocally assigned to triplet 1 by the use of a novel technique that takes advantage of the biradical's photolability. The absorption є = 7200 M^(-1) cm^(-1) and f = 0.022, establishing that the transition is spin-allowed. Further use of the mps technique has demonstrated that the transition is x-polarized, and the excited state 1s therefore of B_(1g) symmetry, in accord with theoretical predictions.
Thermolysis or direct photolysis of diazene 2 in fluid solution produces 2,4- dimethylenebicyclo[l.l.0]butane (3), whose ^(l)H NMR spectrum (-80°C, CD_(2)Cl_(2)) consists of singlets at δ 4.22 and 3.18 in a 2:1 ratio. Compound 3 is thermally unstable and dimerizes with second-order kinetics between -80 and -25°C (∆H^(‡) = 6.8 kcal mol^(-1), (∆s^(‡) = -28 eu) by a mechanism involving direct combination of two molecules of 3 in the rate-determining step. This singlet-manifold reaction ultimately produces a mixture of two dimers, 3,8,9- trimethylenetricyclo[5.1.1.0^(2,5)]non-4-ene (75) and trans-3,10-dimethylenetricyclo[6.2.0.0^(2,5)]deca-4,8-diene (76t), with the former predominating. In contrast, triplet-sensitized photolysis of 2, which leads to triplet 1, provides, in addition to 75 and 76t, a substantial amount of trans-5,10- dimethylenetricyclo[6.2.0.0^(3,6)]deca-3,8-diene (77t) and small amounts of two unidentified dimers.
In addition, triplet biradical 1 ring-closes to 3 in rigid media both thermally (77-140 K) and photochemically. In solution 3 forms triplet 1 upon energy transfer from sensitizers having relatively low triplet energies. The implications of the thermal chemistry for the energy surfaces of the system are discussed.
Resumo:
The oldest fragment of continental crust recognized in South America occurs as an isolated Archean enclave in northeastem Brazil's Borborema Province, ca. 600 Ma Brasiliano-Pan African orogenic belt. This Archean fragment, the Sao Jose do Campestre massif, is surrounded by large tracts of 2.2-2.0 Ga Paleoproterozoic gneisses and is located more than 600-1500 km from the much larger assemblages of Archean rocks found in the Sao Fransciso and Amazonian cratons, located to the south and west, respectively. Geochronological studies of the Sao Jose do Campestre massif show that its oldest rocks contain zircons with U-Pb ages up to 3.5 Ga and Sm-Nd T-DM model ages of more than 3.7 Ga, indicating that they represent reworked crust. This older nucleus is flanked by both reworked and juvenile 3.25 and 3.18 Ga rocks which arc intruded by both 3.00 and 2.69 Ga plutonic bodies. The protracted evolution the Sao Jose do Campestre massif is consistent with that of a larger continental mass as opposed to a small crustal fragment that grew in isolation. As such, the Sao Jose do Campestre massif is interpreted as representing a detached piece of an evolved craton that became entrained with younger rocks during a subsequent Paleoproterozoic accretionary-orogenic event. This hypothesis is bolstered by the presence of Paleoproterozoic gneisses that envelop the Sao Jose do Campestre massif, as well as the existence of ca. 2.0 Ga metamorphic zircon and monazite within its rocks. The occurrence of several different Archean cratonic basement inliers within the greater Paleoproterozoic crustal framework of the Borborema Province suggests that cratonic slices spalled off one or more larger Archean masses prior to the ca. 2.2-2.0 Ga Paleoproterozoic orogenic collage. A important challenge is to link these older fragments to their parent cratons. Although results are not unique, the pattern of ages and isotopic signatures observed in the Sao Jose do Campestre massif is similar to that seen in parts of the Sao Francisco Craton, and it is possible that the Sao Jose do Campestre massif is a fragment of an Archean continental fragment formed during an episode of continental breakup prior to 2200 Ma. (C) 2003 Elsevier B.V. All rights reserved.
Clay mineralogy of sediments of the deep sea sediment trap FS-2, Fram Strait (Appendix A1.3, A5.2.3)
Resumo:
Geochemical and mineralogical proxies for paleoenvironmental conditions have the underlying assumption that climate variations have an impact on terrestrial weathering conditions. Varying properties of terrigenous sediments deposited at sea are therefore often interpreted in terms of paleoenvironmental change. Also in gravity core GeoB9307-3 (18° 33.99' S, 37° 22.89' E), located off the Zambezi River, environmental changes during Heinrich Stadial 1 (HS 1) and the Younger Dryas (YD) are accompanied by changing properties of the terrigenous sediment fraction. Our study focuses on the relationship of variability in the hydrological system and changes in the magnetic properties, major element geochemistry and granulometry of the sediments. We propose that changes in bulk sedimentary properties concur with environmental change, although not as a direct response of climate driven pedogenic processes. Spatial varying rainfall intensities on a sub-basin scale modify sediment export from different parts of the Zambezi River basin. During humid phases, such as HS 1 and the YD, sediment was mainly exported from the coastal areas, while during more arid phases sediments mirror the hinterland soil and lithological properties and are likely derived from the northern Shire sub-basin. We propose that a de-coupling of sedimentological and organic signals with variable discharge and erosional activity can occur.
Clay mineralogy of sediments of the deep sea sediment trap FS-3, Fram Strait (Appendix A1.1, A5.2.1)