999 resultados para 3 tesla
Resumo:
OBJECTIVES: To demonstrate the feasibility of time-reversed fast imaging with steady-state precession (FISP) called PSIF for diffusion-weighted imaging of cartilage and cartilage transplants in a clinical study. MATERIAL AND METHODS: In a cross-sectional study 15 patients underwent MRI using a 3D partially balanced steady-state gradient echo pulse sequence with and without diffusion weighting at two different time points after matrix-associated autologous cartilage transplantation (MACT). Mean diffusion quotients (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) within the cartilage transplants were compared to diffusion quotients found in normal cartilage. RESULTS: The global diffusion quotient found in repair cartilage was significantly higher than diffusion values in normal cartilage (p<0.05). There was a decrease between the earlier and the later time point after surgery. CONCLUSIONS: In-vivo diffusion-weighted imaging based on the PSIF technique is possible. Our preliminary results show follow-up of cartilage transplant maturation in patients may provide additional information to morphological assessment.
Resumo:
Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.
Resumo:
The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 +/- 16.3 years; MACT: 37.4 +/- 8.2 years) and postoperative interval (MFX: 33.0 +/- 17.3 months; MACT: 32.0 +/- 17.2 months). The Delta relaxation rate (DeltaR1) for repair tissue and normal hyaline cartilage and the relative DeltaR1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean DeltaR1 for MFX was 1.07 +/- 0.34 versus 0.32 +/- 0.20 at the intact control site, and for MACT, 1.90 +/- 0.49 compared to 0.87 +/- 0.44, which resulted in a relative DeltaR1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min.
Resumo:
The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination.
Resumo:
BACKGROUND AND PURPOSE The aim of this prospective study was to assess vascular integrity after stent-retriever thrombectomy. METHODS Dissection, contrast medium extravasation, and vasospasm were evaluated in 23 patients after thrombectomy with biplane or 3D-digital subtraction angiography and 3-Tesla vessel wall MRI. RESULTS Vasospasm was detected angiographically in 10 patients, necessitating intra-arterial nimodipine in 2 of them. Contrast extravasation, intramural hemorrhage, or iatrogenic dissection were not detected on multimodal MRI in any patient even after Y-double stent-retriever technique. CONCLUSIONS Our findings suggest that clinically relevant vessel wall injuries occur rarely after stent-retriever thrombectomy.
Resumo:
BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.
Resumo:
Purpose: The purpose of our study was to compare signal characteristics and image qualities of MR imaging at 3.0 T and 1.5 T in patients with diffuse parenchymal liver disease. Materials and methods: 25 consecutive patients with diffuse parenchymal liver disease underwent abdominal MR imaging at both 3.0 T and 1.5 T within a 6-month interval. A retrospective study was conducted to obtain quantitative and qualitative data from both 3.0 T and 1.5 T MRI. Quantitative image analysis was performed by measuring the signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) by the Students t-test. Qualitative image analysis was assessed by grading each sequence on a 3- and 4-point scale, regarding the presence of artifacts and image quality, respectively. Statistical analysis consisted of the Wilcoxon signed-rank test. Results: the mean SNRs and CNRs of the liver parenchyma and the portal vein were significantly higher at 3.0 T than at 1.5 T on portal and equilibrium phases of volumetric interpolated breath-hold examination (VIBE) images (P < 0.05). The mean SNRs were significantly higher at 3.0 T than at 1.5 T on T1-weighted spoiled gradient echo (SGE) images (P < 0.05). However, there were no significantly differences on T2-weighted short-inversion-time inversion recovery (STIR) images. Overall image qualities of the 1.5 T noncontrast T1- and T2-weighted sequences were significantly better than 3.0 T (P < 0.01). In contrast, overall image quality of the 3.0 T post-gadolinium VIBE sequence was significantly better than 1.5 T (P< 0.01). Conclusions: MR imaging of post-gadolinium VIBE sequence at 3.0 T has quantitative and qualitative advantages of evaluating for diffuse parenchymal liver disease. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: To compare three spin-echo sequences, transverse T1-weighted (T1WI), transverse fat-saturated (FS) T2-weighted (T2WI), and transverse gadolinium-enhanced (Gd) FS T1WI, for the visualisation of normal and abnormal finger A2 pulley with magnetic resonance (MR) imaging at 3 tesla (T). MATERIALS AND METHODS: Sixty-three fingers from 21 patients were consecutively investigated. Two musculoskeletal radiologists retrospectively compared all sequences to assess the visibility of normal and abnormal A2 pulleys and the presence of motion or ghost artefacts. RESULTS: Normal and abnormal A2 pulleys were visible in 94% (59/63) and 95% (60/63) on T1WI sequences, in 63% (40/63) and 60% (38/63) on FS T2WI sequences, and in 87% (55/63) and 73% (46/63) on Gd FS T1WI sequences when read by the first and second observer, respectively. Motion and ghost artefacts were higher on FS T2WI sequences. Seven among eight abnormal A2 pulleys were detected, and were best depicted with Gd FS T1WI sequences in 71% (5/7) and 86% (6/7) by the first and the second observer, respectively. CONCLUSION: In 3-T MRI, the comparison between transverse T1WI, FS T2WI, and Gd FS T1WI sequences shows that transverse T1WI allows excellent depiction of the A2 pulley, that FS T2WI suffers from a higher rate of motion and ghost artefacts, and transverse Gd FS T1WI is the best sequence for the depiction of abnormal A2 pulley.
Resumo:
Objectifs: Déterminer l'impact de la traction axiale en arthro-IRM du poignet sur la largeur des espaces interosseux et la caractérisation des lésions ligamentairesintrinsèques du carpe. Matériels et méthodes: Etude prospective incluant 34 patients entre septembre et décembre 2010. Arthro-IRM du poignet réalisées sur une machine 3-Tesla et incluant des séquencescoronales isotropiques haute résolution en pondération T1-VIBE avec suppression de graisse, sans et avec traction axiale (4kg). Lecture consensuelle par 2radiologues avec mesure des espaces scapho-lunaire, luno-triquétral et ulna-TFC, sans et avec traction. Evaluation semi-quantitative des déchiruresligamentaires: 0=absente, 1=partielle, 2=transfixiante avec moignon, 3=transfixiante sans moignon. Résultats: Augmentation significative, en traction axiale, des espaces interosseux scapho-lunaire (Delta=0.21mm, p=0.0016) et luno-triquétral (Delta=0.17mm, p=0.0002)ainsi que de l'espace ulna-TFC (Delta=0.17, p=0.0071). Meilleure caractérisation des lésions dans 5 cas, avec une amélioration significative pour la portioncentrale du ligament scapho-lunaire (p=0.0313). Conclusion: L'arthro-IRM du poignet à 3-Tesla en traction axiale augmente significativement la largeur des espaces scapho -lunaire, luno-triquétral et ulna-TFC et améliore lacaractérisation des lésions de la portion centrale du ligament scapho-lunaire.
Resumo:
Aim: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventro-intermediate (Vim) nucleus of the thalamus for tremor. We currently perform an indirect targeting, using the "quadrilatere of Guyot," as the Vim nucleus is not visible on current 3 Tesla (T) MRI acquisitions. The primary objective of the current study was to enhance anatomic imaging for Vim GKS using high-field (7 T) MRI, with the aim of refining the visualization and precision of anatomical targeting. Method: Five young healthy subjects (mean age 23 years) were scanned both on 3 and 7 T MRI in Lausanne University Hospital (CHUV) and Center for Biomedical Imaging (CIBM). Classical T1-weighted MPRAGE, T2 CISS sequences (replacing former ventriculography) and diffusion tensor imaging were acquired at 3T. We obtained high-resolution susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated for the first time into Leksell Gamma Plan® (LGP) software and co-registered with the 3T images. A simulation of targeting of the Vim was done using the "quadrilatere of Guyot" methodology on the 3T images. Furthermore, a correlation with the position of the found target on SWI was performed. The atlas of Morel et al. was used to confirm the findings on a detailed computer analysis outside LGP. Also, 3T and 7T MRI of one patient undergoing GKS Vim thalamotomy, were obtained before and 2 years after the procedure, and studied similarly. Results: The use of SWI provided a superior resolution and improved image contrast within the central gray matter. This allowed visualization and direct delineation of groups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed with the "quadrilatere of Guyot" method on 3 T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim target area was created on the basis of 3T and 7T images. Conclusion: This is the first report of the integration of SWI high-field MRI into the LGP in healthy subjects and in one patient treated GKS Vim thalamotomy. This approach aims at the improvement of targeting validation and further direct targeting of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T seems to show a very good anatomical matching.
Resumo:
Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.
Resumo:
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved
Resumo:
A Ressonância Magnética Mamaria (RMM), ao longo da década, tem demonstrado um franco desenvolvimento no diagnóstico e caracterização do Carcinoma Mamário. O objectivo deste trabalho científico é demonstrar, através de uma revisão bibliográfica, os avanços desta modalidade na avaliação das lesões da mama, tendo em conta as características: elasticidade (Elastografia), bioquímicas (Espectroscopia), celularidade (Difusão) e vascularização (Perfusão). A avaliação destas em consonância com as morfológicas e cinéticas (RMM), permitem um aumento da especificidade da RMM, reduzindo assim o número de biopsias desnecessárias. Contudo estas evoluções técnicas devem estar em consonância com a inovação em questões de software de processamento de Imagem e hardware dos equipamentos de Ressonância Magnética.
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master in Biomedical Engineering
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.