891 resultados para 2ND ORDER PERIODIC PROBLEMS
Resumo:
We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems in three-dimensional polyhedral domains. To resolve possible corner-, edge- and corner-edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined toward the corresponding neighborhoods. Similarly, the local polynomial degrees are increased linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.
Resumo:
The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.
Resumo:
We studied the relationship between the decline in sensitivity that occurs with eccentricity for stimuli of different spatial scale defined by either luminance (LM) or contrast (CM) modulation. We show that the detectability of CM stimuli declines with eccentricity in a spatial frequency-dependent manner, and that the rate of sensitivity decline for CM stimuli is roughly that expected from their 1st order carriers, except, possibly, at finer scales. Using an equivalent noise paradigm, we investigated the possible reasons for why the foveal sensitivity for detecting LM and CM stimuli differs as well as the reason why the detectability of 1st order stimuli declines with eccentricity. We show the former can be modeled by an increase in internal noise whereas the latter involves both an increase in internal noise and a loss of efficiency. To encompass both the threshold and suprathreshold transfer properties of peripheral vision, we propose a model in terms of the contrast gain of the underlying mechanisms.
Resumo:
We investigate numerically the effect of ultralong Raman laser fiber amplifier design parameters, such as span length, pumping distribution and grating reflectivity, on the RIN transfer from the pump to the transmitted signal. Comparison is provided to the performance of traditional second-order Raman amplified schemes, showing a relative performance penalty for ultralong laser systems that gets smaller as span length increases. We show that careful choice of system parameters can be used to partially offset such penalty. © 2010 Optical Society of America.
Resumo:
We report the generation of a 13dB 2nd order Bragg resonance in a conventionally UV inscribed 45° tilted fiber grating, showing strong polarization dependency and its application for singe polarization output of a fiber laser. © 2010 Optical Society of America.
Resumo:
We consider a periodic problem driven by the scalar $p-$Laplacian and with a jumping (asymmetric) reaction. We prove two multiplicity theorems. The first concerns the nonlinear problem ($1
Resumo:
We obtain a generalized Euler–Lagrange differential equation and transversality optimality conditions for Herglotz-type higher-order variational problems. Illustrative examples of the new results are given.
Resumo:
We introduce a residual-based a posteriori error indicator for discontinuous Galerkin discretizations of the biharmonic equation with essential boundary conditions. We show that the indicator is both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems.
Resumo:
Failures on rolling element bearings usually originate from cracks that are detectable even in their early stage of propogation by properly analyzing vibration signals measured in the proximity of the bearing. Due to micro-slipping in the roller-races contact, damage-induced vibration signals belong to the family of quasi-periodic signals with a strong second order cyclostationary component. Cyclic coherence and its integrated form are widely considered as the most suitable tools for bearing fault diagnostics and their theoretical bases have been already consolidated. This paper presents how to correctly set the parameters of the cyclostationary analysis tool to be implemented in an automatable algorithm. In the first part of the paper some general guidelines are provided for the specific application. These considerations are further verified, applying cyclostationary tools to data collected in an experimental campaign on a specific test-rig.
Resumo:
We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).
Resumo:
In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention
Resumo:
We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on three linear and one quasi-linear PDE, all in nonvariational form.
Resumo:
Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region.
Resumo:
We prove exponential rates of convergence of hp-version discontinuous Galerkin (dG) interior penalty finite element methods for second-order elliptic problems with mixed Dirichlet-Neumann boundary conditions in axiparallel polyhedra. The dG discretizations are based on axiparallel, σ-geometric anisotropic meshes of mapped hexahedra and anisotropic polynomial degree distributions of μ-bounded variation. We consider piecewise analytic solutions which belong to a larger analytic class than those for the pure Dirichlet problem considered in [11, 12]. For such solutions, we establish the exponential convergence of a nonconforming dG interpolant given by local L 2 -projections on elements away from corners and edges, and by suitable local low-order quasi-interpolants on elements at corners and edges. Due to the appearance of non-homogeneous, weighted norms in the analytic regularity class, new arguments are introduced to bound the dG consistency errors in elements abutting on Neumann edges. The non-homogeneous norms also entail some crucial modifications of the stability and quasi-optimality proofs, as well as of the analysis for the anisotropic interpolation operators. The exponential convergence bounds for the dG interpolant constructed in this paper generalize the results of [11, 12] for the pure Dirichlet case.
Resumo:
The 'moving targets' algorithm for training recurrent networks is reviewed and applied to a task which demonstrates the ability of this algorithm to use distant contextual information. Some practical difficulties are discussed, especially with regard to the minimization process. Results on performance and computational requirements of several different 2nd-order minimization algorithms are presented for moving target problems.