948 resultados para 290500 Mechanical and Industrial Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the world of information and communications technologies the demand for professionals with software engineering skills grows at an exponential rate. On this ground, we have conducted a study to help both academia and the software industry form a picture of the relationship between the competences of recent graduates of undergraduate and graduate software engineering programmes and the tasks that these professionals are to perform as part of their jobs in industry. Thanks to this study, academia will be able to observe which skills demanded by industry the software engineering curricula do or do not cater for, and industry will be able to ascertain which tasks a recent software engineering programme graduate is well qualified to perform. The study focuses on the software engineering knowledge guidelines provided in SE2004 and GSwE2009, and the job profiles identified by Career Space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different kinds of algorithms can be chosen so as to compute elementary functions. Among all of them, it is worthwhile mentioning the shift-and-add algorithms due to the fact that they have been specifically designed to be very simple and to save computer resources. In fact, almost the only operations usually involved with these methods are additions and shifts, which can be easily and efficiently performed by a digital processor. Shift-and-add algorithms allow fairly good precision with low cost iterations. The most famous algorithm belonging to this type is CORDIC. CORDIC has the capability of approximating a wide variety of functions with only the help of a slight change in their iterations. In this paper, we will analyze the requirements of some engineering and industrial problems in terms of type of operands and functions to approximate. Then, we will propose the application of shift-and-add algorithms based on CORDIC to these problems. We will make a comparison between the different methods applied in terms of the precision of the results and the number of iterations required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproduced from type-written copy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally Research Administration. On verso: N.Campus. ORA Headquarters. Research Adm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The information architecture supports information retrieval by users in Web environment. The design should be center in the information user, favoring usability. The Faculty of Industrial Engineering and Tourism of the Universidad Central "Marta Abreu" de Las Villas, lacks a site that enhances the disclosure of information to its members. Are presented as objectives of the study: 1) conduct a user survey to identify information needs of users, 2) establish guidelines for information architecture for the institution focused on users, 3) designing the information architecture for the institution and 4) designed to evaluate the proposal. Are presented as objectives of the study: 1) to realize a user study to identify the information needs of users, 2) establish guidelines for information architecture for the institution focused on users, 3) to design the information architecture for the institution and 4) to evaluate the proposal designed. To obtain results are used methods in the theoretical and empirical levels. Besides, are use techniques that favored the design and evaluation. Is designed the intranet of the Faculty of Industrial Engineering and Tourism. Is evaluated the proposed design for the validation of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monolithic materials cannot always satisfy the demands of today’s advanced requirements. Only by combining several materials at different length-scales, as nature does, the requested performances can be met. Polymer nanocomposites are intended to overcome the common drawbacks of pristine polymers, with a multidisciplinary collaboration of material science with chemistry, engineering, and nanotechnology. These materials are an active combination of polymers and nanomaterials, where at least one phase lies in the nanometer range. By mimicking nature’s materials is possible to develop new nanocomposites for structural applications demanding combinations of strength and toughness. In this perspective, nanofibers obtained by electrospinning have been increasingly adopted in the last decade to improve the fracture toughness of Fiber Reinforced Plastic (FRP) laminates. Although nanofibers have already found applications in various fields, their widespread introduction in the industrial context is still a long way to go. This thesis aims to develop methodologies and models able to predict the behaviour of nanofibrous-reinforced polymers, paving the way for their practical engineering applications. It consists of two main parts. The first one investigates the mechanisms that act at the nanoscale, systematically evaluating the mechanical properties of both the nanofibrous reinforcement phase (Chapter 1) and hosting polymeric matrix (Chapter 2). The second part deals with the implementation of different types of nanofibers for novel pioneering applications, trying to combine the well-known fracture toughness enhancement in composite laminates with improving other mechanical properties or including novel functionalities. Chapter 3 reports the development of novel adhesive carriers made of nylon 6,6 nanofibrous mats to increase the fracture toughness of epoxy-bonded joints. In Chapter 4, recently developed rubbery nanofibers are used to enhance the damping properties of unidirectional carbon fiber laminates. Lastly, in Chapter 5, a novel self-sensing composite laminate capable of detecting impacts on its surface using PVDF-TrFE piezoelectric nanofibers is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the characterization of carbide lime (CL) - a by-product of acetylene production, composed mainly of calcium hydroxide with minor parts of carbonate - and compares its features to those of ""dry"" hydrated lime (HL) commonly used as a building material. Chemical, thermogravimetric and X-ray diffraction analyses indicated that the limes are similar in chemical and mineralogical compositions. except for the presence of carbon in the waste. Morphological and elemental chemical analyses by SEM and EDS revealed that CL particles differ from HL ones in their morphology and by the presence of carbon formations, Physical characterization included density and BET surface area of the materials. as well as, their particle size distributions in deionized water at diverse time periods. CL underwent agglomeration after approximately 60 min in water, whereas HL progressively became finer with time as determined by laser diffraction. In addition, water retention and squeeze flow tests were used to assess the pastes` fresh properties. (c) 2009 Elsevier B.V. All rights reserved.