963 resultados para 290304 Control Engineering


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the design of robust feedback H~-control systems for the control of the upright posture of paraplegic persons standing. While the subject stands in a special apparatus, stabilising torque at the ankle joint is generated by electrical stimulation of the paralyzed calf muscles. Since the muscles acting as actuators in this setup show a significant degree of nonlinearity, a robust H~-control design is used. The design approach is implemented in experiments with a paraplegic subject. The results demonstrate good performance and closed loop stability over the whole range of operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, an overview is given of some of the more common approaches taken in applying adaptive control. Gain scheduling, model reference control and self-tuning control are all discussed and in each case suggestions are given for further reading.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In most commercially available predictive control packages, there is a separation between economic optimisation and predictive control, although both algorithms may be part of the same software system. This method is compared in this article with two alternative approaches where the economic objectives are directly included in the predictive control algorithm. Simulations are carried out using the Tennessee Eastman process model.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paraplegic subjects lack trunk stability due to the loss of voluntary muscle control.This leads to a restriction of the volume of bi-manual workspace available,and hence has a detrimental impact on activities of daily living. Electrical Stimulation of paralysed muscles can be used to stabilize the trunk, but has never been applied in closed loop for this purpose. This paper describes the development of two closed loop controllers(PID and LQR),and their experimental evaluation on a human subject. Advantages and disadvantages of the two are discussed,considering a potential use of this technology during daily activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously the author described how control engineering can be introduced using little mathematics in a first year course, the aim being to make the subject accessible across different degrees. One reaction to this was that it was a good idea, but there was not space to include it in the curriculum where, typically control engineering is not introduced until the second year. This paper describes how the author has used a review of the first year teaching to develop a module in which feedback, control and electronics are integrated coherently. This is beneficial as concepts in control and electronics mutually reinforce each other. This has been achieved during a reduction in the available time for teaching the material. This paper describes the strategy used to successfully develop the module, the integrated module and positive student reaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report presents a new way of control engineering. Dc motor speed controlled by three controllers PID, pole placement and Fuzzy controller and discusses the advantages and disadvantages of each controller for different conditions under loaded and unloaded scenarios using software Matlab. The brushless series wound Dc motor is very popular in industrial application and control systems because of the high torque density, high efficiency and small size. First suitable equations are developed for DC motor. PID controller is developed and tuned in order to get faster step response. The simulation results of PID controller provide very good results and the controller is further tuned in order to decrease its overshoot error which is common in PID controllers. Further it is purposed that in industrial environment these controllers are better than others controllers as PID controllers are easy to tuned and cheap. Pole placement controller is the best example of control engineering. An addition of integrator reduced the noise disturbances in pole placement controller and this makes it a good choice for industrial applications. The fuzzy controller is introduce with a DC chopper to make the DC motor speed control smooth and almost no steady state error is observed. Another advantage is achieved in fuzzy controller that the simulations of three different controllers are compared and concluded from the results that Fuzzy controller outperforms to PID controller in terms of steady state error and smooth step response. While Pole placement controller have no comparison in terms of controls because designer can change the step response according to nature of control systems, so this controller provide wide range of control over a system. Poles location change the step response in a sense that if poles are near to origin then step response of motor is fast. Finally a GUI of these three controllers are developed which allow the user to select any controller and change its parameters according to the situation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.