958 resultados para 290301 Robotics and Mechatronics
Resumo:
As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.
Resumo:
In the long term, productivity and especially productivity growth are necessary conditions for the survival of a farm. This paper focuses on the technology choice of a dairy farm, i.e. the choice between a conventional and an automatic milking system. Its aim is to reveal the extent to which economic rationality explains investing in new technology. The adoption of robotics is further linked to farm productivity to show how capital-intensive technology has affected the overall productivity of milk production. The empirical analysis applies a probit model and an extended Cobb-Douglas-type production function to a Finnish farm-level dataset for the years 2000–10. The results show that very few economic factors on a dairy farm or in its economic environment can be identified to affect the switch to automatic milking. Existing machinery capital and investment allowances are among the significant factors. The results also indicate that the probability of investing in robotics responds elastically to a change in investment aids: an increase of 1% in aid would generate an increase of 2% in the probability of investing. Despite the presence of non-economic incentives, the switch to robotic milking is proven to promote productivity development on dairy farms. No productivity growth is observed on farms that keep conventional milking systems, whereas farms with robotic milking have a growth rate of 8.1% per year. The mean rate for farms that switch to robotic milking is 7.0% per year. The results show great progress in productivity growth, with the average of the sector at around 2% per year during the past two decades. In conclusion, investments in new technology as well as investment aids to boost investments are needed in low-productivity areas where investments in new technology still have great potential to increase productivity, and thus profitability and competitiveness, in the long run.
Resumo:
Mode of access: Internet.
Resumo:
In the recent decades, robotics has become firmly embedded in areas such as education, teaching, medicine, psychology and many others. We focus here on social robotics; social robots are designed to interact with people in a natural and interpersonal way, often to achieve positive results in different applications. To interact and cooperate with humans in their daily-life activities, robots should exhibit human-like intelligence. The rapid expansion of social robotics and the existence of various kinds of robots on the market have allowed research groups to carry out multiple experiments. The experiments carried out have led to the collections of various kinds of data, which can be used or processed for psychological studies, and studies in other fields. However, there are no tools available in which data can be stored, processed and shared with other research groups. This thesis proposes the design and implementation of visual tool for organizing dataflows in Human Robot Interaction (HRI).
Resumo:
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are still competing for a place in the classical engineering graduate curricula. Innovative and dynamic Master’s programs may offer the solution to this gap. The Master’s degree in autonomous systems at the Instituto Superior de Engenharia do Porto (ISEP), Porto, Portugal, was designed to provide a solid training in robotics and has been showing interesting results, mainly due to differences in course structure and the context in which students are welcomed to study and work
Resumo:
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are still competing for a place in the classical engineering graduate curricula. Innovative and dynamic Master's programs may offer the solution to this gap. The Master's degree in autonomous systems at the Instituto Superior de Engenharia do Porto (ISEP), Porto, Portugal, was designed to provide a solid training in robotics and has been showing interesting results, mainly due to differences in course structure and the context in which students are welcomed to study and work.
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.
Resumo:
This paper reviews current research works at the authors’ Institutions to illustrate how mobile robotics and related technologies can be used to enhance economical fruition, control, protection and social impact of the cultural heritage. Robots allow experiencing on-line, from remote locations, tours at museums, archaeological areas and monuments. These solutions avoid travelling costs, increase beyond actual limits the number of simultaneous visitors, and prevent possible damages that can arise by over-exploitation of fragile environments. The same tools can be used for exploration and monitoring of cultural artifacts located in difficult to reach or dangerous areas. Examples are provided by the use of underwater robots in the exploration of deeply submerged archaeological areas. Besides, technologies commonly employed in robotics can be used to help exploring, monitoring and preserving cultural artifacts. Examples are provided by the development of procedures for data acquisition and mapping and by object recognition and monitoring algorithms.
Resumo:
This paper proposes a mixed validation approach based on coloured Petri nets and 3D graphic simulation for the design of supervisory systems in manufacturing cells with multiple robots. The coloured Petri net is used to model the cell behaviour at a high level of abstraction. It models the activities of each cell component and its coordination by a supervisory system. The graphical simulation is used to analyse and validate the cell behaviour in a 3D environment, allowing the detection of collisions and the calculation of process times. The motivation for this work comes from the aeronautic industry. The automation of a fuselage assembly process requires the integration of robots with other cell components such as metrological or vision systems. In this cell, the robot trajectories are defined by the supervisory system and results from the coordination of the cell components. The paper presents the application of the approach for an aircraft assembly cell under integration in Brazil. This case study shows the feasibility of the approach and supports the discussion of its main advantages and limits. (C) 2011 Elsevier Ltd. All rights reserved.