996 resultados para 290202 Flight Dynamics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the number of space debris is increasing in the geostationary ring, it becomes mandatory for any satellite operator to avoid any collisions. Space debris in geosynchronous orbits may be observed with optical telescopes. Other than radar, that requires very large dishes and transmission powers for sensing high-altitude objects, optical observations do not depend on active illumination from ground and may be performed with notably smaller apertures. The detection size of an object depends on the aperture of the telescope, sky background and exposure time. With a telescope of 50 cm aperture, objects down to approximately 50 cm may be observed. This size is regarded as a threshold for the identification of hazardous objects and the prevention of potentially catastrophic collisions in geostationary orbits. In collaboration with the Astronomical Institute of the University of Bern (AIUB), the German Space Operations Center (GSOC) is building a small aperture telescope to demonstrate the feasibility of optical surveillance of the geostationary ring. The telescope will be located in the southern hemisphere and complement an existing telescope in the northern hemisphere already operated by AIUB. These two telescopes provide an optimum coverage of European GEO satellites and enable a continuous monitoring independent of seasonal limitations. The telescope will be operated completely automatically. The automated operations should be demonstrated covering the full range of activities including scheduling of observations, telescope and camera control as well as data processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Space debris in geostationary orbits may be detected with optical telescopes when the objects are illuminated by the Sun. The advantage compared to Radar can be found in the illumination: radar illuminates the objects and thus the detection sensitivity depletest proportional to the fourth power of the d istance. The German Space Operation Center, GSOC, together with the Astronomical Institute of the University of Bern, AIUB, are setting up a telescope system called SMARTnet to demonstrate the capability of performing geostationary surveillance. Such a telescope system will consist of two telescopes on one mount: a smaller telescope with an aperture of 20cm will serve for fast survey while the larger one, a telescope with an aperture of 50cm, will be used for follow-up observations. The telescopes will be operated by GSOC from Oberpfaffenhofen by the internal monitoring and control system called SMARTnetMAC. The observation plan will be generated by MARTnetPlanning seven days in advance by applying an optimized planning scheduler, taking into account fault time like cloudy nights, priority of objects etc. From each picture taken, stars will be identified and everything not being a star is treated as a possible object. If the same object can be identified on multiple pictures within a short time span, the trace is called a tracklet. In the next step, several tracklets will be correlated to identify individual objects, ephemeris data for these objects are generated and catalogued . This will allow for services like collision avoidance to ensure safe operations for GSOC’s satellites. The complete data processing chain is handled by BACARDI, the backbone catalogue of relational debris information and is presented as a poster.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite’s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical length is dynamically equivalent to the perturbation produced by an oblate central body on a mass-point satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Final report for period 1 August 1972 to 30 September 1976."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Sponsored by the Air Force Flight Dynamics Laboratory ... under Contract AF 33(615)-1835."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inserted Report documentation page designates D. W. Boyer ... [et al.] as "authors."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

pt. 1. Summary [by] L. A. Marshall.--pt. 2. Conical body experimental program [by] R. B. Hobbs, Jr.--pt. 3. Unsteady flow field program [by] H. Rie, E. A. Linkiewicz [and] F. D. Bosworth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

pt. 1. Equipment.--pt. 2. Equipment trials.--pt. 3. Base surveys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Work performed for the Air Force Flight Dynamics Laboratory...by the Aerodynamics Research Department of the Northrup Corporation, Aircraft Division."