989 resultados para 27-263
Resumo:
Leg 27 sediments were analyzed for total carbon and acid-insoluble (organic) carbon using a LECO acid-base Analyzer. The 3-cc sediment samples were first dried at 105°-110°C and then ground to a homogeneous powder. The ground sediment was redried and two samples, a 0.1-g and a 0.5-g sample, were then weighed into LECO clay crucibles. The 0.5-g sample was acidified with diluted hydrochloric acid and washed with distilled water. The sample was then dried and analyzed for acid-insoluble carbon, listed in the table as "organic" carbon. The 0.1-g sample was analyzed for total carbon without further treatment. If the result showed less than 10% CaCO3, an additional 0.5-g sample was analyzed for greater accuracy. The calcium carbon percentages were calculated as follows: (% total C-% organic C) * 8.33 = % CaCO3. Although other carbonates may be present, all acid-soluble carbon was calculated as calcium carbonate. All results are given in weight percent.
Resumo:
Crescimento de Fungos em Estrume
Resumo:
Quantified organic-walled dinoflagellate cyst (dinocyst) assemblages are presented for two sedimentary successions deposited in neritic environments of the Tethys Ocean during the Barremian and Aptian in an attempt to reconcile established dinocyst biostratigraphic schemes for Tethyan and Austral regions. One section is at Angles, southeast France (the Barremian stratotype section); the other is at Deep Sea Drilling Project Site 263, off northwest Australia. We also construct a carbon isotope record for Site 263 using bulk organic carbon. Both sections contain abundant, well-preserved dinocyst assemblages. These are diverse, with 89 taxa identified at Angles and 103 taxa identified at Site 263. Of these, more than 93% are cosmopolitan. When combined with other work at Angles and Site 263, we found that nine dinocysts have their first occurrence (FO) or last occurrence (LO) at both locations. These dinocyst events are, in alphabetical order: LO of Cassiculosphaeridia magna, FO of Criboperidinium? tenuiceras, LO of Kleithriasphaeridium fasciatum, LO of Muderongia staurota, FO of Odontochitina operculata, LO of Phoberocysta neocomica, FO of Prolixosphaeridium parvispinum, FO of Pseudoceratium retusum var. securigerum, and FO of Tehamadinium sousense. Although these events support a Barremian-Aptian age for both sections, their stratigraphic order is not the same in the sections. The d13Corg record at Site 263 displays a characteristic series of changes that have also been recorded in other carbon isotope curves spanning the Late Barremian-Early Aptian. Such independent dating (along with ammonite zones at Angles) suggests that three of the nine dinocyst events are approximately isochronous at Angles and Site 263: the LO of K. fasciatum in the mid Barremian, the FO of P. retusum var. securigerum and the FO of C.? tenuiceras in the earliest Aptian; the other six dinocyst events are diachronous. Dinocyst assemblages at Site 263 can be loosely placed within existing Australian zonation schemes, providing much-needed calibration. Our data suggest that the Muderongia testudinaria Zone ends in sediments of mid Barremian age, the succeeding Muderongia australis Zone extends into the Early Aptian, and the younger Odontochitina operculata Zone begins in Early Aptian deposits. The boundary between the M. australis and O. operculata zones, and the Ovoidinium cinctum (as Ascodinium) Subzone, positioned at the top of the M. australis Zone when present, could not be recognized incontrovertibly. Interestingly, however, this horizon broadly correlates with the onset and extent of the Selli Event, a time of major biogeochemical change.
Resumo:
Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (delta13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average delta13C values for organic matter from most Cretaceous sites are between -26 and -28 per mil, and values heavier than about -25 per mil occur at very few sites. Most of the delta13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23 per mil. Values of delta13C of modern terrestrial organic matter are mostly between -23 and -33 per mil. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5 per mil in delta13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5 per mil relative to modern plankton OC. Diagenesis does not produce a significant shift in delta13C in Miocene to Holocene sediments, and therefore probably did not produce the isotopically light Cretaceous OC. This means that Cretaceous marine plankton must have had delta13C values that were about 5 per mil lighter than modern marine plankton, and at least several per mil lighter than Cretaceous terrestrial vegetation. The reason for these lighter values, however, is not obvious. It has been proposed that concentrations of CO2 were higher during the middle Cretaceous, and this more available CO2 may be responsible for the lighter delta13C values of Cretaceous marine organic matter.
Resumo:
Analysis of 66 samples from DSDP Site 263 (Cores 263-4R-4 to 263-29R-4) reveals a unique faunal composition with a predominance of agglutinated taxa, many of them previously unrecorded from any other DSDP and ODP Indian Ocean sites. A total of 66 agglutinated and 31 calcareous taxa are documented and five new species are described: Hippocrepina gracilis n.sp., "Textuluriopsis" elegans n.sp., Aaptotoichus challengeri n.sp., "Gaudryinopsis" pseudobettenstaedti n.sp. and "Gaudryina" cuvierensis n.sp. Three assemblages are recognized based on changes in the composition of dominant taxa and occurrences of stratigraphically important species: (1) a high-diversity Valanginian to Barremian Bulbobaculites-Recurvoides Assemblage (Cores 263-29R to - 18R), comprised of numerous elongate agglutinated forms, rare nodosariids, and variable numbers of tubes and ammodiscids; (2) a moderately diverse Aptian to Albian Rhizammina-Ammodiscus-Glomospira Assemblage (Cores 263-18R to -7R) with highly fluctuating numbers of the nominate taxa and Haplophragmoides, Trochammina, Verneuilinoides spp., and Verneuilina howchini; (3) a very low diversity Albian or younger Assemblage (Cores 263-6R to -4R) containing sparse agglutinated foraminifera, rare nodosariids and rotaliids. We interpret the assemblages as shelf to lower slope and consider them to reflect a deepening palaeobathymetry as the Cuvier margin subsided after the initial breakup of East Gondwana during the Valanginian. Our interpretation is in sharp contrast with initial palaeodepth estimates of less than 100 m, as well as with original chronostratigraphic interpretations based on foraminifera and nannofossils which correlated the base of the recovered interval with the Aptian. The absence of many cosmoplitan forms, despite high diversity suggests strong faunal differentiation in the Austral realm or endemisn within the Cuvier Basin during the Early Cretaceous.
Resumo:
The Indian Ocean covers approximately 73.5 * 10**6 km**3 from 25°N to 67°S and from 20° to 120°E. Several legs of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) have operated in its waters, many penetrating the Cretaceous. Most of the scientific drill sites are DSDP related and thus pre-dated modern biostratigraphic conventions. Foraminifers and calcareous nannoplankton were by far the dominant fossil groups studied in the earlier work, supplemented occasionally by studies of other fossil groups, The results of the Ocean Drilling Project phase are yet too young to be fully integrated but have been based on a broader range of techniques and fossil groups. During most of the Cretaceous, the proto-Indian Ocean basin lay in middle to high latitudes. Thus, it is unrealistic to expect successful routine application of low-latitude zonations. No planktonic foraminifer zonal scheme has been developed for the Indian Ocean basin for several reasons. There are no sections with complete or even significant partial sections to allow development of such a zonation. Carbonate compensation depth (CCD) effects have been marked in most sections, and significant intervals are devoid of planktonic foraminifers. The Indian Ocean now covers a great latitudinal range from tropics to polar regions and, at first glance, no scheme can be expected to be applicable over that entire range. In the Cretaceous the area was much smaller, though expanding progressively, and the paleolatitude range was quite small. Calcareous nannoplankton have proved valuable in dating Indian Ocean Cretaceous sediments and have, perhaps in contrast with the foraminifers, been consistently a more reliable means of applying zonal schemes developed elsewhere. For the Albian-Aptian, zonations based on well-known benthic foraminifer lineages (Scheibnerova, 1974) have been useful when nothing else was available or effective. Palynology has been used little, but where used, has proved excellent. It has the added value of providing valuable information on nearby terrestrial vegetation as the fossils were resistant to dissolution. Normally, when different fossil groups have been applied to a section, the results have been compatible or compatible to an acceptable degree. There are a few instances where incompatibility is noteworthy, and Site 263 is a classic example, as even two calcareous nannoplankton studies show irreconcilable differences here. All groups gave different results, but one benthic foraminifer analysis agreed with one calcareous nannoplankton study.
Resumo:
As mentioned in the letter by van der Linden and van der Heijde, Jurgen Braun’s excellent recent paper describing a survey of blood donors by questionnaire, clinical, and magnetic resonance imaging examinations revealed a prevalence of ankylosing spondylitis in B27 positive blood donors (6.4%)1-1 very similar to that reported by Gran et al(6.7%).1-2 It is probable that some of the differences in reported prevalence of ankylosing spondylitis by the various studies are because of methodological differences.
Resumo:
resenta las reseñas de los siguientes libros: LUÍS CLÁUDIO VILLAFAÑE G. SANTOS, EL IMPERIO DEL BRASIL Y LAS REPÚBLICAS DEL PACÍFICO, 1822-1889, BIBLIOTECA DE HISTORIA NO. 23, QUITO, UNIVERSIDAD ANDINA SIMÓN BOLÍVAR, SEDE ECUADOR/CORPORACIÓN EDITORA NACIONAL/FUNDAÇÃO ALEXANDRE DE GUSMÃO, 2007, 168 PP. -- RICARDO DEL MOLINO GARCÍA, GRIEGOS Y ROMANOS EN LA PRIMERA REPÚBLICA COLOMBIANA. LA ANTIGÜEDAD CLÁSICA EN EL PENSAMIENTO EMANCIPADOR NEOGRANADINO (1810-1816), BOGOTÁ, ACADEMIA COLOMBIANA DE HISTORIA, 2007, 246 PP. -- ALFONSO REECE DOUSDEBÉS, MORGA: SUCESOS DE LA REAL AUDIENCIA DE QUITO, QUITO, ALFAGUARA, 2007, 263 PP. -- JEAN-PAUL DELER, ECUADOR, DEL ESPACIO AL ESTADO NACIONAL, BIBLIOTECA DE HISTORIA NO. 24, QUITO, UNIVERSIDAD ANDINA SIMÓN BOLÍVAR, SEDE ECUADOR/CORPORACIÓN EDITORA NACIONAL/INSTITUTO FRANCÉS DE ESTUDIOS ANDINOS, 2008, 2A. ED. CORREGIDA Y AUMENTADA, 496 pp. -- OLAF KALTMEIER, JATARISHUN. TESTIMONIOS DE LA LUCHA INDÍGENA DE SAQUISILÍ (1930-2006), COLECCIÓN POPULAR 15 DE NOVIEMBRE, NO. 10, QUITO, UNIVERSIDAD ANDINA SIMÓN BOLÍVAR, SEDE ECUADOR/UNIVERSIDAD DE BIELEFELD/CORPORACIÓN EDITORA NACIONAL, 2008, 330 PP.