980 resultados para 240204 Condensed Matter Physics - Other
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.
Resumo:
We study, with exact diagonalization, the zero temperature properties of the quarter-filled extended Hubbard model on a square lattice. We find that increasing the ratio of the intersite Coulomb repulsion, V, to the bandwidth drives the system from a metal to a charge ordered insulator. The evolution of the optical conductivity spectrum with increasing V is in agreement with the observed optical conductivity of several layered molecular crystals with the theta and beta crystal structures.
Resumo:
l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.
Resumo:
We develop a method for determining the elements of the pressure tensor at a radius r in a cylindrically symmetric system, analogous to the so-called method of planes used in planar systems [B. D. Todd, Denis J. Evans, and Peter J. Daivis, Phys. Rev. E 52, 1627 (1995)]. We demonstrate its application in determining the radial shear stress dependence during molecular dynamics simulations of the forced flow of methane in cylindrical silica mesopores. Such expressions are useful for the examination of constitutive relations in the context of transport in confined systems.
Resumo:
We propose a model for non-ideal monitoring of the state of a coupled quantum dot qubit by a quantum tunnelling device. The non-ideality is modelled using an equivalent measurement circuit. This allows realistically available measurement results to be related to the state of the quantum system (qubit). We present a quantum trajectory that describes the stochastic evolution of the qubit state conditioned by tunnelling events (i.e. current) through the device. We calculate and compare the noise power spectra of the current in an ideal and a non-ideal measurement. The results show that when the two qubit dots are strongly coupled the non-ideal measurement cannot detect the qubit state precisely. The limitation of the ideal model for describing a realistic system maybe estimated from the noise spectra.
Resumo:
Within the ballistic transport picture, we have investigated the spin-polarized transport properties of a ferromagnetic metal/two-dimensional semiconductor (FM/SM) hybrid junction and an FM/FM/SM structure using quantum tunnelling theory. Our calculations indicate explicitly that the low spin injection efficiency (SIE) from an FM into an SM, compared with a ferromagnet/normal metal junction, originates from the mismatch of electron densities in the FM and SM. To enhance the SIE from an FM into an SM, we introduce another FM film between them to form FM/FM/SM double tunnel junctions, in which the quantum interference effect will lead to the current polarization exhibiting periodically oscillating behaviour, with a variation according to the thickness of the middle FM film and/or its exchange energy strength. Our results show that, for some suitable values of these parameters, the SIE can reach a very high level, which can also be affected by the electron density in the SM electrode.
Resumo:
We investigate resonant tunnelling through molecular states of an Aharonov-Bohm (AB) interferometer composed of two coupled quantum dots. The conductance of the system shows two resonances associated with the bonding and the antibonding quantum states. We predict that the two resonances are composed of a Breit-Wigner resonance and a Fano resonance, of which the widths and Fano factor depend on the AB phase very sensitively. Further, we point out that the bonding properties, such as the covalent and ionic bonding, can be identified by the AB oscillations.
Resumo:
We study the effect of coherent charge and spin fluctuations in a mesoscopic device composed of a quantum dot and an Aharonov-Bohm ring. We show that, while the charge fluctuations suppress the persistent current algebraically as a function of the level spacing of the ring, the spin fluctuations give rise to a completely different behavior. We discuss the origin of this difference in relation to the peculiar nature of the ground state in the Kondo limit. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Spin precession due to Rashba spin-orbit coupling in a two-dimension electron gas is the basis for the spin field effect transistor, in which the overall perfect spin-polarized current modulation could be acquired. There is a prerequisite, however, that a strong transverse confinement potential should be imposed on the electron gas or the width of the confined quantum well must be narrow. We propose relieving this rather strict limitation by applying an external magnetic field perpendicular to the plane of the electron gas because the effect of the magnetic field on the conductance of the system is equivalent to the enhancement of the lateral confining potential. Our results show that the applied magnetic field has little effect on the spin precession length or period although in this case Rashba spin-orbit coupling could lead to a Zeeman-type spin splitting of the energy band.
Resumo:
We investigate the emission of multimodal polarized light from light emitting devices due to spin-aligned carrier injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as nonradiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g factor and magnetic field affect the degree of polarization of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring the degree of spin polarization of carrier injection into nonmagnetic semicondutors.
Resumo:
We investigate a scheme that makes a quantum nondemolition (QND) measurement of the excitation level of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two beam bending modes. The nonlinear coupling between the two modes shifts the resonant frequency of the readout oscillator in proportion to the excitation level of the system oscillator. This frequency shift may be detected as a phase shift of the readout oscillation when driven on resonance. We derive an equation for the reduced density matrix of the system oscillator, and use this to study the conditions under which discrete jumps in the excitation level occur. The appearance of jumps in the actual quantity measured is also studied using the method of quantum trajectories. We consider the feasibility of the scheme for experimentally accessible parameters.
Resumo:
We determine the phase diagram of the half-filled two-leg ladder both at weak and strong coupling, taking into account the Cu d(x)(2)-y(2) and the O p(x) and p(y) orbitals. At weak coupling, renormalization group flows are interpreted with the use of bosonization. Two different models with and without outer oxygen orbitals are examined. For physical parameters, and in the absence of the outer oxygen orbitals, the D-Mott phase arises; a dimerized phase appears when the outer oxygen atoms are included. We show that the circulating current phase that preserves translational symmetry does not appear at weak coupling. In the opposite strong-coupling atomic limit the model is purely electrostatic and the ground states may be found by simple energy minimization. The phase diagram so obtained is compared to the weak-coupling one.
Resumo:
The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t-J(')-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbor antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction J(') increases the attraction between electrons in the d(xy) channel only, so that both charge and spin fluctuations work cooperatively to produce d(xy) pairing.
Resumo:
We introduce a spin-charge conductance matrix as a unifying concept underlying charge and spin transport within the framework of the Landauer-Buttiker conductance formula. It turns out that the spin-charge conductance matrix provides a natural and gauge covariant description for electron transport through nanoscale electronic devices. We demonstrate that the charge and spin conductances are gauge invariant observables which characterize transport phenomena arising from spin-dependent scattering. Tunnelling through a single magnetic atom is discussed to illustrate our theory.