25 resultados para 228Ra


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4 dpm/m**3 at the Gulf of Mexico to 3.0 dpm m? 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm/m**2/y from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 10**15 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multitracer approach is applied to assess the impact of boundary fluxes (e.g., benthic input from sedi- ments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the d13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indi- cates the presence of an external carbon source, which is traced to the European continental coastline using naturally occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of meta- bolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e., unbuffered) release of metabolic DIC. Finally, long- term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actinium is one of the rarest naturally occurring elements on earth. We measured its longest-lived isotope 227Ac (half-life 21.77 yr) for the first time in the water column of the Southeast Pacific, the Central Arctic, the Antarctic Circumpolar Current (ACC) and the Weddell Gyre (WG). Besides the profile in the Southeast Pacific, which confirms earlier findings about the role of diapycnal mixing for 227Ac distribution, we found three other different types of vertical profiles. These profiles point to a prominent role of advection for 227Ac distribution, especially in the Southern Ocean. Depending on the type of profile found, 227Ac is proposed as a tracer for different oceanographic questions. In the Southern Ocean, up to 4.93±0.32 dpm/m**3 227Ac is found close to the sea floor, which is the highest concentration ever observed in the ocean. Close to the sea surface in the WG, 0.46±0.05 dpm/m**3 227Acex (227Ac in excess of its progenitor 231Pa) is detected. We use 227Acex there to determine the upwelling velocity in the Eastern WG to be about 55 m/yr. In the ACC, Upper and Lower Circumpolar Deep Water (UCDW and LCDW) are found to differ clearly in their 227Acex activity. High 227Acex activities are therefore a promising tracer for recent inputs of LCDW to the sea surface, which may help to understand the role of deep upwelling for iron inputs into Antarctic surface waters. The expected release of 227Ac is compared with 228Ra to make sure that the large near-surface excess in the water column of the Southern Ocean is not due to lateral inputs by isopycnal mixing. Data from the Central Arctic and from a transect across the ACC confirm that 228Ra and 227Acex differ strongly in their sources. The first measurements of 227Ac on suspended matter (less than 1.7% of total 227Ac close to the sea floor) indicate that the particle reactivity of 227Ac is negligible in the open ocean, in agreement with earlier findings [Y. Nozaki, Nature 310 (1984) 486-488]. Despite the extremely low concentrations of 227Ac, new measurement techniques [W.S. Moore, R. Arnold, J. Geophys. Res. 101 (1996) 1321-1329] point to a comfortable and comparably simple determination of 227Ac in the future. Finally, 227Acex may become a widely used deep-sea specific tracer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transpolar drift is strongly enriched in 228Ra accumulated on the wide Arctic shelves with subsequent rapid offshore transport. We present new data of Polarstern expeditions to the central Arctic and to the Kara and Laptev seas. Because 226Ra activities in Pacific waters are 30% higher than in Atlantic waters, we correct 226Ra for the Pacific admixture when normalizing 228Ra with 226Ra. The use of 228Ra decay as age marker critically depends on the constancy in space and time of the source activity, a condition that has not yet adequately been tested. While 228Ra decays during transit over the central basin, ingrowth of 228Th could provide an alternative age marker. The high 228Th/228Ra activity ratio (AR = 0.8-1.0) in the central basins is incompatible with a mixing model based on horizontal eddy diffusion. An advective model predicts that 228Th grows to an equilibrium AR, the value of which depends on the scavenging regime. The low AR over the Lomonosov Ridge (AR = 0.5) can be due to either rapid transport (minimum age without scavenging 1.1 year) or enhanced scavenging. Suspended particulate matter load (derived from beam transmission and particulate 234Th) and total 234Th depletion data show that scavenging, although extremely low in the central Arctic, is enhanced over the Lomonosov Ridge, making an age of 3 years more likely. The combined data of 228Ra decay and 228Th ingrowth confirm the existence of a recirculating gyre in the surface water of the eastern Eurasian Basin with a river water residence time of at least 3 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface water in the Transpolar Drift in the Arctic Ocean has a strong signature of 228Ra. In an earlier study of 228Ra in the open Arctic we showed that the major 228Ra source had to be in the Siberian shelf seas, but only a single shelf station was published so far. Here we investigate the sources of this signal on the Siberian shelves by measurements of 228Ra and 226Ra in surface waters of the Kara and Laptev Sea, including the Ob, Yenisey and Lena estuaries. In the Ob and Lena rivers we found an indication for a very strong and unexpected removal of both isotopes in the early stage of estuarine mixing, presumably related to flocculation of organic-rich material. Whereas 226Ra behaves conservatively on the shelf, the distribution of 228Ra is governed by large inputs on the shelves, although sources are highly variable. In the Kara Sea the maximum activity was found in the Baydaratskaya Bay, where tidal resonance and low freshwater supply favour 228Ra accumulation. The Laptev Sea is a stronger source for 228Ra than the Kara Sea. Since a large part of Kara Sea water flows through the Laptev Sea, the 228Ra signal in the Transpolar Drift can be described as originating on the Laptev shelf. The combined freshwater inputs from the Eurasian shelves thus produce a common radium signature with a 228Ra/226Ra activity ratio of 4.0 at 20% river water. The radium signals of the individual Siberian rivers and shelves cannot be separated, but their signal is significantly different from the signal produced on the Canadian shelf (Smith et al., in press). In this respect, the radium tracers add to the information given by Barium. Moreover, with the 5.8 year half-life of 228Ra, they have the potential to serve as a tracer for the age of a water mass since its contact with the shelves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural radionuclides and man-made 137Cs were analyzed in five short sediment cores taken in northern part of the Gulf of Eilat (Gulf of Aqaba) in order to provide information on sedimentation and mixing rates and sediment sources. The maximum estimates of sedimentation rates based on excess 210Pb were found to vary between 0.105 ± 0.020 and 0.35 ± 0.23 cm · year**-1. Even the lowest estimates are significantly higher than those expected from dust deposition, suggesting other sources and processes being responsible for most of the allochthonous material accumulation, including periodical floods following heavy rain events, internal erosion or triggers, like earthquakes. In 137Cs depth profiles no 1963 related nuclear weapon test maxima were found; instead, the activities decrease monotonically, suggesting that a major process leading to radionuclides' depth distribution might be mixing. The mixing rates calculated from 137Cs, excess 210Pb and excess 228Th reach values up to 2.18 ± 0.69 cm**2 · year**-1.