994 resultados para 208-1263C
Resumo:
Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earth's orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earth's orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene.
Resumo:
The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of ~2000 * 10**9 metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowerd deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 * 10**9 metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.
Resumo:
To date, the only Southern Hemisphere eolian grain-size record constructed for the early Paleogene comes from Deep Sea Drilling Project Site 215. Ten early Paleogene sediment samples from Site 215 were collected and processed to show that the existing eolian grain-size record at this site can be reproduced. Five samples each from Ocean Drilling Program Sites 1263 and 1267 were similarly examined to test the possibility of generating new Southern Hemisphere eolian grain-size records for the early Paleogene. Our results indicate that an eolian grain-size signal can be constructed at Walvis Ridge, although the record will be complicated by hemipelagic terrigenous inputs. Further, we assert that a record generated at a site located on the deep flanks of Walvis Ridge is particularly susceptible to hemipelagic influence.