961 resultados para 2,4-pentanedione Schiff Base Derived From N-methyldithiocarbazate
Resumo:
Signaling through the interleukin 2 receptor (IL-2R) involves phosphorylation of several proteins including Jak3, STAT5, and, in preactivated cells, STAT3. In the present study, we examined the functional status of the IL-2R-associated Jak/STAT pathway in malignant T lymphocytes from advanced skin-based lymphomas: anaplastic large T-cell lymphoma (ALCL) and Sezary syndrome (SzS). Proliferation of three ALCL cell lines (PB-1, 2A, and 2B) was partially inhibited by rapamycin, a blocker of some of the signals mediated by IL-2R, but not by cyclosporin A, FK-506, and prednisone, which suppress signals mediated by the T-cell receptor. All the cell lines expressed on their surface the high-affinity IL-2R (alpha, beta, and gamma c chains). They showed basal, constitutive phosphorylation, and coassociation of Jak3, STAT5, and STAT3. Weak basal phosphorylation of IL-2R gamma c was also detected. In regard to SzS, peripheral blood mononuclear cells from 10 of 14 patients showed basal phosphorylation of Jak3, accompanied by phosphorylation of STAT5 in 9 patients, and STAT3 in 4 patients. However, in vitro overnight culture of SzS cells without exogenous cytokines resulted in markedly decreased Jak3 and STAT5 phosphorylation, which could be reversed by stimulation with IL-2. This indicates that the basal phosphorylation of Jak3 and STAT5 in freshly isolated SzS cells is induced rather than constitutive. The basal activation of the Jak/STAT pathway involved in IL-2R signal transduction in ALCL and SzS cells reported here suggests that this pathway may play a role in the pathogenesis of cutaneous T-cell lymphomas, although the mechanism (induced versus constitutive) may vary between different lymphoma types.
Resumo:
This article gives details of our proposal to replace ordinary chiral SU(3)L×SU(3)R perturbation theory χPT3 by three-flavor chiral-scale perturbation theory χPTσ. In χPTσ, amplitudes are expanded at low energies and small u,d,s quark masses about an infrared fixed point αIR of three-flavor QCD. At αIR, the quark condensate ⟨q¯q⟩vac≠0 induces nine Nambu-Goldstone bosons: π,K,η, and a 0++ QCD dilaton σ. Physically, σ appears as the f0(500) resonance, a pole at a complex mass with real part ≲ mK. The ΔI=1/2 rule for nonleptonic K decays is then a consequence of χPTσ, with a KSσ coupling fixed by data for γγ→ππ and KS→γγ. We estimate RIR≈5 for the nonperturbative Drell-Yan ratio R=σ(e+e−→hadrons)/σ(e+e−→μ+μ−) at αIR and show that, in the many-color limit, σ/f0 becomes a narrow qq¯ state with planar-gluon corrections. Rules for the order of terms in χPTσ loop expansions are derived in Appendix A and extended in Appendix B to include inverse-power Li-Pagels singularities due to external operators. This relates to an observation that, for γγ channels, partial conservation of the dilatation current is not equivalent to σ-pole dominance.
Resumo:
Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.
Resumo:
A novel bisazomethine Schiff base was synthesised by the condensation of 3-hydroxyquinoxaline-2- carboxaldehyde and 2,3-diaminomaleonitrile. 1H NMR, 13C NMR, HPLC and FT-IR studies revealed that the compound exists in two major tautomeric forms. The Schiff base exhibits positive absorption and fluorescent solvatochromism and displays dual fluorescence with large stoke shifts. Cyclic voltammetric analysis of the compound in 1:1 methanol–THF was influenced by scan rate. Thermal analysis of the compound was undertaken using TG–DTA and DSC
Resumo:
Zeolite Y-encapsulated ruthenium(III) complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 1,2- phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYqpd, RuYqap and RuYqab, respectively) and the Schiff bases derived from salicylaldehyde and 1,2-phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYsalpd, RuYsalap and RuYsalab, respectively) have been prepared and characterized. These complexes, except RuYqpd, catalyze catechol oxidation by H2O2 selectively to 1,2,4-trihydroxybenzene. RuYqpd is inactive. A comparative study of the initial rates and percentage conversion of the reaction was done in all cases. Turn over frequency of the catalysts was also calculated. The catalytic activity of the complexes is in the order RuYqap > RuYqab for quinoxaline-based complexes and RuYsalap > RuYsalpd > RuYsalab for salicylidene-based complexes. The reaction is believed to proceed through the formation of a Ru(V) species.
Resumo:
Two new reduced Schiff base ligands, [HL1 = 4-(2-[(pyridin-2-ylmethyl)-amino]-ethylimino)-pentan-2-one and HL2 =4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical schiff bases derived from 1.1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L-1)]ClO4 (1), [Cu(L-1)]ClO4 (2). [Ni(L-2)]ClO4 (3). and [Cu(L-2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L-1 and L-2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two Cu-II complexes (2 and 4) exhibit both irreversible reductive (Cu-II/Cu-II, E-pc. -1.00 and -1.04 V) and oxidative (Cu-II/CUII, E-pa, + 1.22 and + 1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated Cu-1 species for both the complexes are unstable and undergo disproportionation.
Resumo:
Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies
Resumo:
A dinuclear Ni-II complex, [Ni-2(L)(2)(H2O)(NCS)(2)]center dot 3H(2)O (1) in which the metal atoms are bridged by one water molecule and two mu(2)-phenolate ions, and a thiocyanato-bridged dimeric Cull complex, [Cu(L)NCS](2) (2) [L = tridentate Schiff-base ligand, N-(3-aminopropyl)salicylaldimine, derived from 1:1 condensation of salicylaldehyde and 1,3-diaminopropane], have been synthesized and characterized by IR and UV/Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction studies. The structure of 1 consists of dinuclear units with crystallographic C-2 symmetry in which each Ni-II atom is in a distorted octahedral environment. The Ni-O distance and the Ni-O-Ni angle, through the bridged water molecule, are 2.240(11) angstrom and 82.5(5)degrees, respectively. The structure of 2 consists of dinuclear units bridged asymmetrically by di-mu(1,3)-NCS ions; each Cull ion is in a square-pyramidal environment with tau = 0.25. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complex 1 with J = 3.1 cm(-1), whereas complex 2 exhibits weak antiferromagnetic coupling between the Cu-II centers with J = -1.7 cm(-1). ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável, especialidade de Química-Física Inorgânica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The fluorescence spectrum of the schiff base obtained from salicylaldehyde and 2-aminophenol is studied using an argon-ion laser as the excitation source and its fluorescence quantum yield (Qf) is determined using a thermal lens method. This is a nondestructive technique that gives the absolute value of Qf without the need for a fluorescence standard. The quantum-yield values are calculated for various concentrations of the solution in chloroform and also for various excitation wavelengths. The value of Qf is relatively high, and is concentration dependent. The maximum value of Qf obtained is nearly 0.78. The high value of the fluorescence quantum yield will render the schiff base useful as a fluorescent marker for biological applications. Photostability and gain studies will assess its suitability as a laser dye.
Resumo:
INTRODUCTION The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models generated from dental impressions (Digimodels; Orthoproof, Nieuwegein, The Netherlands). The Digimodels were used as the reference standard. METHODS The 3 types of digital models were made from 10 subjects. Four examiners repeated 37 linear tooth and arch measurements 10 times. Paired t tests and the intraclass correlation coefficient were performed to determine the reproducibility and accuracy of the measurements. RESULTS The CBCT images showed significantly smaller intraclass correlation coefficient values and larger duplicate measurement errors compared with the corresponding values for Digimodels and Anatomodels. The average difference between measurements on CBCT images and Digimodels ranged from -0.4 to 1.65 mm, with limits of agreement values up to 1.3 mm for crown-width measurements. The average difference between Anatomodels and Digimodels ranged from -0.42 to 0.84 mm with limits of agreement values up to 1.65 mm. CONCLUSIONS Statistically significant differences between measurements on Digimodels and Anatomodels, and between Digimodels and CBCT images, were found. Although the mean differences might be clinically acceptable, the random errors were relatively large compared with corresponding measurements reported in the literature for both Anatomodels and CBCT images, and might be clinically important. Therefore, with the CBCT settings used in this study, measurements made directly on CBCT images and Anatomodels are not as accurate as measurements on Digimodels.