982 resultados para 2,2 -Bipyridine
Resumo:
The multi-layered electroluminescent device consisting of Eu(TTA)(3)(2,2'-bipyridine mono N-oxide) (TTA = 2-thenoyltrifluoroacetonate) as the red dopant exhibited an impressive current and power efficiency at a brightness of 100 cd m(-2) and voltage-independent spectral stability.
Resumo:
A new multifunctional multilayer films consisting of tris(2,2'-bipyridyl)ruthenium(II) (Rubpy) and sodium decatungstate (W-10) have been prepared by the layer-by-layer (LbL) self-assembly method on ITO substrate. X-ray photoelectron spectra (XPS) confirmed the existence of W10 and Rubpy. Cyclic voltammetry (CV) and UV-Vis spectroscopy demonstrated the uniform assembly of (W-10/Rubpy) multilayer films. The multilayer films possess electrocatalytic activities on the reduction of iodate and oxidation of oxalate. Moreover, the films exhibited electrochemiluminescence (ECL) with tripropylamine (abbreviated as TPA) as the coreactant and the ECL response was proportional to the number of (W-10/Rubpy) layers. These characteristics of the multilayer films might find potential applications in the field of sensors and materials fields.
Resumo:
A novel approach of generating cathodic electrochemiluminescence lof Ru(bpy)(3)(2+) at -0.4 V triggered by reactive oxygen species is reported for detecting alkylamines and some organic acids.
Resumo:
A new detection scheme for the determination of adsorbable coreactants of Ru(bpy)(3)(2+) electrochemiluminescent reaction is presented. It is based on selective preconcentration of coreactant onto an electrode, followed by Ru(bpy)(3)(2+) electrochemiluminescent detection. The coreactant employed is chlorpromazine. It was sensitively detected after 5-min preconcentration onto a lauric acid-modified carbon paste electrode. The linear concentration range was found to occur from 1 x 10(-8) to 3 x 10(-6) mol L-1 with a detection limit of 3.1 x 10(-9) mol L-1. The total analysis time is less than 10 min. As a result of selective preconcentration and medium exchange, such remarkable selectivity is achieved that reproducible quantitation of chlorpromazine in urine is possible.
Resumo:
The efficient synthesis of 5-(5-bromovaleramido)-1,10-phenanthroline, 5-(6-bromohexanamido)-1,10-phenanthroline, and 5-(11-bromoundecanamido)-1,10-phenanthroline are described, which reacted with cis-Ru(bpy)(2)Cl-2. 2H(2)O and sodium hexafluorophosphate to form Ru(bpy)(2)[phen-NHCO(CH2)(n)Br](PF6)(2) (n = 4, 5 or 10; phen = 1,10-phenanthroline). The intricate H-1 NMR spectra at low field of these complexes were completely assigned in virtue of H-1-H-1 COSY technique. Cyclic voltammetry was used to study electrochemical behaviours of these complexes, and their luminescent properties were investigated with fluorescent spectra.
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.
Resumo:
The (1) H and C-13 NMR spectra are reported for Ru(4, 4'-dimethyl-2,2'-bipyridene)(2) (2,2'-bipyridine-4,4'-dicarboxylic acid) (PF6)(2) that can be used as a new electrochemiluminescent probe in immunoasssay and nucleic acid hybridization assay. Because of the effect ol:Ru atom ligands and complex steric configuration, it is difficult to attribute spectra of the title molecular, By using 2D (1) H-(1) H COSY and (1) H-C-13 HETCOR method, the proton and C-13 NMR spectra are assigned completely, which provides a satisfactory method to quantitative and qualitative, analysis of the title moleculer in the further study.
Resumo:
The H-1 and C-13 nuclear magnetic resonance(NMR) spectra are reported for bis(2, 2'-bipyridine)(2, 2'-bipyridine-,4,4'-dicarboxylic acid) ruthenium(II) hexafluoruphosphate that has been used as a tagged molecule of electrochemiluminescent immunoassay. Because of the effect of Ru atom on ligands, it is difficult to assign its NMR spectra. BS' means of two dimensional H-1-H-1 COSY and H-1-C-13 COSY techniques, the H-1 and C-13 NMR spectra of bis (2, 2'-bipylidine) (2, 2'-bipyridine-4, 4-dicarboxylic acid) ruthenium(II) hexafluorophosphate are assigned completely. This provides a basis for NMR characterization of the nerv similar tagged molecules.
Resumo:
The effects of heteropoly acids and Triton X-100 on electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) are investigated. Triton X-100 prevents the oxidation of oxalate and results in an increase of the ECL signal. H5SiW11VO40 prevents the direct oxidation of oxalate and makes the electrochemical behavior of Ru(bpy)(3)(2+) less reversible, which leads to a decrease of the ECL signal. In contrast, H3PMo12O40 has negligible effect on ECL intensity. Some possible reasons for the effects on the ECL of Ru(bpy)(3)(2+) are discussed based on the adsorption of SiW11VO405- on electrode surface and the ion association between SiW11VO405- and Ru(bpy)(3)(2+). The signal of ECL decreases linearly with the concentration of heteropoly acid in the range from 2x10-6 to 1x10(-4) mol l(-1). The results indicate that ECL of RU(bpy)(3)(2+) is a potential sensitive and selective detection method for heteropoly acids and hence for the elements comprised in them.
Resumo:
The H-1 and C-13 NMR spectra are reported for Ru(2,2'-bipyridine)(2)(4,4'-dimethyl-2,2'-bipyridine)(PF6)(2) that may be used as elechochemiluminescent species. Because of the effect of Ru atom on ligands and complex steric configuration, it is, difficult to attribute the spectra of the title molecular. By using 2D H-1-H-1 COSY and H-1-C-13 COSY methods, the proton and carbon-13 spectra are assigned completely. This also provides a basis for NMR characterization of the-similar new compounds.
Resumo:
The gold electrodes modified with 2-picolinic acid , nicotinic acid, iso-nicotinic or thiophene were prepared using membrane transfer method, The electrochemistry of di-mu-oxodimanganese 2,2'-bipyridine complex was studied in the acetic acid buffer solution at different modified gold electrodes, It was found that the modifiers which can promote the electrochemical reaction of the complex should be of at least two functional groups, One group can be bound to the electrode surface and the other can form electron transfer pathway between the modifier and the complex through sal; bridge or hydrogen bond, In addition, the mechanism of the electrochemical reaction was discussed.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.