956 resultados para 1H magnetic resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We wish to report the detection of dimethyl sulfone (methylsulfonylmethane, C2H6O2S) in the brain of a normal 62-year-old male using in vivo proton magnetic resonance spectroscopy. The presence of this exogenous metabolite resulted from ingestion of a dietary supplement containing dimethyl sulfone. The concentration of this compound in the brain was measured to be 2.4 mmol, with a washout half life of approximately 7.5 days. The in vivo T-1 and T-2 relaxation times of dimethyl sulfone were measured to be 2180 ms and 385 ms, respectively. The concentration of major brain metabolites, namely N-acetylaspartate, total Creatine and Choline, and myo-Inositol were within normal limits. (C) 2000 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The few studies applying single-voxel(1)H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low N-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol / phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study was to evaluate NAA, glycerophosphocholine plus phosphocholine (GPC+PC) and PCr+Cr in various frontal cortical areas in children and adolescents with BD. We hypothesized that NAA levels within the prefrontal cortex are lower in BD patients than in healthy controls, indicating neurodevelopmental alterations in the former. Method: We studied 43 pediatric patients with DSM-IV BD (19 female, mean age 13.2 +/- 2.9 years) and 38 healthy controls (79 female, mean age 13.9 +/- 2.7 years). We conducted multivoxel in vivo (1)H spectroscopy measurements at 1.5 Tesla using a long echo time of 272 ms to obtain bilateral metabolite levels from the medial prefrontal cortex (MPFC), DLPFC (white and gray matter), cingulate (anterior and posterior), and occipital lobes. We used the nonparametric Mann-Whitney U test to compare neurochemical levels between groups. Results: In pediatric BD patients, NAA and GPC+PC levels in the bilateral MPFC, and PCr+Cr levels in the left MPFC were lower than those seen in the controls. In the left DLPFC white matter, levels of NAA and PCr+Cr were also lower in BD patients than in controls. Conclusions: Lower NAA and PCr+Cr levels in the PFC of children and adolescents with BD may be indicative of abnormal dendritic arborization and neuropil, suggesting neurodevelopmental abnormalities. J. Am. Acad. Child Adolesc. Psychiatry, 2011;50(1):85-94.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theories of panic disorder propose an extensive involvement of limbic system structures, such as the hippocampus, in the pathophysiology of this condition. Despite this, no prior study has examined exclusively the hippocampal neurochemistry in this disorder. The current study used proton magnetic resonance spectroscopy imaging ((1)H-MRSI) to examine possible abnormalities in the hippocampus in panic disorder patients. Participants comprised 25 panic patients and 18 psychiatrically healthy controls. N-acetylaspartate (NAA, a putative marker of neuronal viability) and choline (Cho, involved in the synthesis and degradation of cell membranes) levels were quantified relative to creatine (Cr, which is thought to be relatively stable among individuals and in different metabolic condition) in both right and left hippocampi. Compared with controls, panic patients demonstrated significantly lower NAA/Cr in the left hippocampus. No other difference was detected. This result is consistent with previous neuroimaging findings of hippocampal alterations in panic and provides the first neurochemical evidence suggestive of involvement of this structure in the disorder. Moreover, lower left hippocampal NAA/Cr in panic disorder may possibly reflect neuronal loss and/or neuronal metabolic dysfunction, and could be related to a deficit in evaluating ambiguous cues. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcoholism is highly prevalent among bipolar disorder (BD) patients, and its presence is associated with a worse outcome and refractoriness to treatment of the mood disorder. The neurobiological underpinnings that characterize this comorbidity are unknown. We sought to investigate the neurochemical profile of the dorsolateral prefrontal cortex (DLPFC) of BD patients with comorbid alcoholism. A short-TE, single-voxel (1)H spectroscopy acquisition at 1.5T from the left DLFPC of 22 alcoholic BD patients, 26 non-alcoholic BD patients and 54 healthy comparison subjects (HC) were obtained. Absolute levels of N-acetyl aspartate, phosphocreatine plus creatine, choline-containing compounds, myo-inositol, glutamate plus glutamine (Glu + Gln) and glutamate were obtained using the water signal as an internal reference. Analysis of co-variance was used to compare metabolite levels among the three groups. In the primary comparison, non-alcoholic BD patients had higher glutamate concentrations compared to alcoholic BD patients. In secondary comparisons integrating interactions between gender and alcoholism, non-alcoholic BD patients presented significantly higher glutamate plus glutamine (Glu + Gln) than alcoholic BD patients and HC. These results appeared to be driven by differences in male subjects. Alcoholic BD patients with additional drug use disorders presented significantly lower myo-inositol than BD patients with alcoholism alone. The co-occurrence of BD and alcoholism may be characterized by neurochemical abnormalities related to the glutamatergic system and to the inositol second messenger system and/or in glial pathology. These abnormalities may be the neurochemical correlate of an increased risk to develop alcoholism in BD, or of a persistently worse clinical and functional status in BD patients in remission from alcoholism, supporting the clinical recommendation that efforts should be made to prevent or early diagnose and treat alcoholism in BD patients. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenic patients undergoing proton magnetic resonance spectroscopy show alterations in N-acetyl aspartate levels in several brain regions, indicating neuronal dysfunction. The present review focuses on the main proton magnetic resonance spectroscopy studies in the frontal lobe of schizophrenics. A MEDLINE search, from 1991 to March 2004, was carried out using the key-words spectroscopy and schizophrenia and proton and frontal. In addition, articles cited in the reference list of the studies obtained through MEDLINE were included. As a result, 27 articles were selected. The results were inconsistent, 19 papers reporting changes in the N-acetyl aspartate levels, while 8 reported no change. Methodological analysis led to the conclusion that the discrepancy may be due the following factors: (i) number of participants; (ii) variation in the clinical and demographic characteristics of the groups; (iii) little standardization of the acquisition parameters of spectroscopy. Overall, studies that fulfill strict methodological criteria show N-acetyl aspartate decrease in the frontal lobe of male schizophrenics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a number of cases of smuggling dissolved cocaine in wine bottles have been reported. The aim of the present study was to determine whether cocaine dissolved in wine can be detected by proton magnetic resonance spectroscopy ((1) H MRS) on a standard clinical MR scanner, in intact (i.e. unopened) wine bottles. (1) H MRS experiments were performed with a 3 Tesla clinical scanner on wine phantoms with or without cocaine contamination. The aromatic protons of cocaine displayed resonance peaks in the 7-8 ppm region of the spectrum, where no overlapping resonances of wine were present. Additional cocaine resonances were detected in the 2-3 ppm region of the spectrum, between the resonances of ethanol and other wine constituents. Detection of cocaine in wine (at 5 mM, i.e. ∼1.5 g/L) was feasible in a scan time of 1 min. We conclude that dissolved cocaine can be detected in intact wine bottles, on a standard clinical MR scanner. Thus, (1) H MRS is the technique of choice to examine this type of suspicious cargo, since it allows for a non-destructive and rapid content characterization. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, evidence has emerged indicating that the growth of a vast majority of tumors including gliomas is sustained by a subpopulation of cancer cells with stem cell properties called cancer initiating cells. These cells are able to initiate and propagate tumors and constitute only a fraction of all tumor cells. In the present study, we showed that intracerebral injection of cultured glioma-initiating cells into nude mice produced fast growing tumors showing necrosis and gadolinium enhancement in MR images, whereas gliomas produced by injecting freshly purified glioma-initiating cells grew slowly and showed no necrosis and very little gadolinium enhancement. Using proton localized spectroscopy at 14.1 Tesla, decreasing trends of N-acetylaspartate, glutamate and glucose concentrations and an increasing trend of glycine concentration were observed near the injection site after injecting cultured glioma-initiating cells. In contrast to the spectra of tumors grown from fresh cells, those from cultured cells showed intense peaks of lipids, increased absolute concentrations of glycine and choline-containing compounds, and decreased concentrations of glutamine, taurine and total creatine, when compared with a contralateral non-tumor-bearing brain tissue. A decrease in concentrations of N-acetylaspartate and γ-aminobutyrate was found in both tumor phenotypes after solid tumor formation. Further investigation is needed to determine the cause of the dissimilarities between the tumors grown from cultured glioma-initiating cells and those from freshly purified glioma-initiating cells, both derived from human glioblastomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.