993 resultados para 1995_12250831 Optics-25
Resumo:
A 5-day training in Nonimaging Optics for European SME’s employees was carried out in June 2012 in the framework of the FP7 funded Support Action "SMETHODS". The training combined theoretical introduction and hands-on practice. The experience was very positive, and the lessons learned will improve the next scheduled sessions. Introduction The FP7 funded Support Action "SMETHODS" [1] is an initiative of seven European academic institutions to strengthen Europe's optics and photonics industry, which has started on 1 September 2011. Participation in training sessions is free for participants, who are selected with priority will be given to employees of small and medium sized European enterprises (SMEs). The consortium in SMETHODS is formed by seven partners that are the most prominent academic institutions in optical design in their countries. Through fully integrated collaborative training sessions, the consortium provides professional assistance as well as hands-on training in a variety of design tasks in four domains: (1) imaging optics, (2) nonimaging optics, (3) wave optics, and (4) diffractive optics. For each of this domains domain, 5-day training sessions are scheduled to be hold in different locations throughout Europe, four times in two years, the teach four times in a 2.5 years period.
Resumo:
In this contribution the line flow method is applied to an optimized secondary optics in a photovoltaic concentration system where the primary optics is already defined and characterized. This method is a particular application of photic field theory. This method uses the parameterization of a given primary optics, including actual tolerances of the manufacturing process. The design of the secondary optics is constrained by the selection of primary optics and maximizes the concentration at a previously specified collection area. The geometry of the secondary element is calculated by using a virtual source, which sends light in a first concentration step. This allows us to calculate the line flow for this specific case. This concept allows designing more compact and efficient secondary optics of photovoltaic systems.
Resumo:
Party 25 involved the conception and public launch of a radically new form of political party during that year’s Australian general election. The entire project was also intentioned as a conceptual artwork. Party 25 avoided conventional party-political approaches and was neither a protest group nor an advocacy organisation, but rather a new form of political association that confronted what we understood as the debilitating limits and impotence of contemporary parliamentary democracies in transitioning our societies towards ecological sustainability.----- Party 25 was based on responding to one fundamental question which all of its policies served - “how does humanity get to the 25th century?” By basing itself on a dramatically long-term approach uncommon within conventional politics it raised the proposition that humanity does not have an assured future. Party25 therefore shaped its agendas around the idea that any future now lies in human hands and so how humanity treats the ecologies on which it depends innately determines the quality of the inseparable relationship between its being, and the being of the biophysical world.----- The project was conceived through a number of discussion papers, workshops and creative works and was launched publicly at the Judith Wright Centre Brisbane accompanied by a full length showing of evocative imagery, text and sound, a series of speeches and the launch of a succinct web presence. Through the website and this party launch a community of interested participants and creative practitioners was sought who then would form the basis of a nascent community of change.
Resumo:
The author undertook a qualitative and quantitative survey of 130 guidance counsellors and primary school principles focusing on perceptions of what school guidance and counselling will be like in 25 years. Generally the participants held similar beliefs and were bullish about employment prospects.
Resumo:
We extended an earlier study (Vision Research, 45, 1967–1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3–6 mm artificial pupils, and 0.1–0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were ±0.30, ±0.24 and ±0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3–6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.
Corneal topography with Scheimpflug imaging and videokeratography : comparative study of normal eyes
Resumo:
PURPOSE: To compare the repeatability within anterior corneal topography measurements and agreement between measurements with the Pentacam HR rotating Scheimpflug camera and with a previously validated Placido disk–based videokeratoscope (Medmont E300). ------ SETTING: Contact Lens and Visual Optics Laboratory, School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia. ----- METHODS: Normal eyes in 101 young adult subjects had corneal topography measured using the Scheimpflug camera (6 repeated measurements) and videokeratoscope (4 repeated measurements). The best-fitting axial power corneal spherocylinder was calculated and converted into power vectors. Corneal higher-order aberrations (HOAs) (up to the 8th Zernike order) were calculated using the corneal elevation data from each instrument. ----- RESULTS: Both instruments showed excellent repeatability for axial power spherocylinder measurements (repeatability coefficients <0.25 diopter; intraclass correlation coefficients >0.9) and good agreement for all power vectors. Agreement between the 2 instruments was closest when the mean of multiple measurements was used in analysis. For corneal HOAs, both instruments showed reasonable repeatability for most aberration terms and good correlation and agreement for many aberrations (eg, spherical aberration, coma, higher-order root mean square). For other aberrations (eg, trefoil and tetrafoil), the 2 instruments showed relatively poor agreement. ----- CONCLUSIONS: For normal corneas, the Scheimpflug system showed excellent repeatability and reasonable agreement with a previously validated videokeratoscope for the anterior corneal axial curvature best-fitting spherocylinder and several corneal HOAs. However, for certain aberrations with higher azimuthal frequencies, the Scheimpflug system had poor agreement with the videokeratoscope; thus, caution should be used when interpreting these corneal aberrations with the Scheimpflug system.
Resumo:
The eyelids play an important role in lubricating and protecting the surface of the eye. Each blink serves to spread fresh tears, remove debris and replenish the smooth optical surface of the eye. Yet little is known about how the eyelids contact the ocular surface and what pressure distribution exists between the eyelids and cornea. As the principal refractive component of the eye, the cornea is a major element of the eye’s optics. The optical properties of the cornea are known to be susceptible to the pressure exerted by the eyelids. Abnormal eyelids, due to disease, have altered pressure on the ocular surface due to changes in the shape, thickness or position of the eyelids. Normal eyelids also cause corneal distortions that are most often noticed when they are resting closer to the corneal centre (for example during reading). There were many reports of monocular diplopia after reading due to corneal distortion, but prior to videokeratoscopes these localised changes could not be measured. This thesis has measured the influence of eyelid pressure on the cornea after short-term near tasks and techniques were developed to quantify eyelid pressure and its distribution. The profile of the wave-like eyelid-induced corneal changes and the refractive effects of these distortions were investigated. Corneal topography changes due to both the upper and lower eyelids were measured for four tasks involving two angles of vertical downward gaze (20° and 40°) and two near work tasks (reading and steady fixation). After examining the depth and shape of the corneal changes, conclusions were reached regarding the magnitude and distribution of upper and lower eyelid pressure for these task conditions. The degree of downward gaze appears to alter the upper eyelid pressure on the cornea, with deeper changes occurring after greater angles of downward gaze. Although the lower eyelid was further from the corneal centre in large angles of downward gaze, its effect on the cornea was greater than that of the upper eyelid. Eyelid tilt, curvature, and position were found to be influential in the magnitude of eyelid-induced corneal changes. Refractively these corneal changes are clinically and optically significant with mean spherical and astigmatic changes of about 0.25 D after only 15 minutes of downward gaze (40° reading and steady fixation conditions). Due to the magnitude of these changes, eyelid pressure in downward gaze offers a possible explanation for some of the day-to-day variation observed in refraction. Considering the magnitude of these changes and previous work on their regression, it is recommended that sustained tasks performed in downward gaze should be avoided for at least 30 minutes before corneal and refractive assessment requiring high accuracy. Novel procedures were developed to use a thin (0.17 mm) tactile piezoresistive pressure sensor mounted on a rigid contact lens to measure eyelid pressure. A hydrostatic calibration system was constructed to convert raw digital output of the sensors to actual pressure units. Conditioning the sensor prior to use regulated the measurement response and sensor output was found to stabilise about 10 seconds after loading. The influences of various external factors on sensor output were studied. While the sensor output drifted slightly over several hours, it was not significant over the measurement time of 30 seconds used for eyelid pressure, as long as the length of the calibration and measurement recordings were matched. The error associated with calibrating at room temperature but measuring at ocular surface temperature led to a very small overestimation of pressure. To optimally position the sensor-contact lens combination under the eyelid margin, an in vivo measurement apparatus was constructed. Using this system, eyelid pressure increases were observed when the upper eyelid was placed on the sensor and a significant increase was apparent when the eyelid pressure was increased by pulling the upper eyelid tighter against the eye. For a group of young adult subjects, upper eyelid pressure was measured using this piezoresistive sensor system. Three models of contact between the eyelid and ocular surface were used to calibrate the pressure readings. The first model assumed contact between the eyelid and pressure sensor over more than the pressure cell width of 1.14 mm. Using thin pressure sensitive carbon paper placed under the eyelid, a contact imprint was measured and this width used for the second model of contact. Lastly as Marx’s line has been implicated as the region of contact with the ocular surface, its width was measured and used as the region of contact for the third model. The mean eyelid pressures calculated using these three models for the group of young subjects were 3.8 ± 0.7 mmHg (whole cell), 8.0 ± 3.4 mmHg (imprint width) and 55 ± 26 mmHg (Marx’s line). The carbon imprints using Pressurex-micro confirmed previous suggestions that a band of the eyelid margin has primary contact with the ocular surface and provided the best estimate of the contact region and hence eyelid pressure. Although it is difficult to directly compare the results with previous eyelid pressure measurement attempts, the eyelid pressure calculated using this model was slightly higher than previous manometer measurements but showed good agreement with the eyelid force estimated using an eyelid tensiometer. The work described in this thesis has shown that the eyelids have a significant influence on corneal shape, even after short-term tasks (15 minutes). Instrumentation was developed using piezoresistive sensors to measure eyelid pressure. Measurements for the upper eyelid combined with estimates of the contact region between the cornea and the eyelid enabled quantification of the upper eyelid pressure for a group of young adult subjects. These techniques will allow further investigation of the interaction between the eyelids and the surface of the eye.
Resumo:
Studies have examined the associations between cancers and circulating 25-hydroxyvitamin D [25(OH)D], but little is known about the impact of different laboratory practices on 25(OH)D concentrations. We examined the potential impact of delayed blood centrifuging, choice of collection tube, and type of assay on 25(OH)D concentrations. Blood samples from 20 healthy volunteers underwent alternative laboratory procedures: four centrifuging times (2, 24, 72, and 96 h after blood draw); three types of collection tubes (red top serum tube, two different plasma anticoagulant tubes containing heparin or EDTA); and two types of assays (DiaSorin radioimmunoassay [RIA] and chemiluminescence immunoassay [CLIA/LIAISON®]). Log-transformed 25(OH)D concentrations were analyzed using the generalized estimating equations (GEE) linear regression models. We found no difference in 25(OH)D concentrations by centrifuging times or type of assay. There was some indication of a difference in 25(OH)D concentrations by tube type in CLIA/LIAISON®-assayed samples, with concentrations in heparinized plasma (geometric mean, 16.1 ng ml−1) higher than those in serum (geometric mean, 15.3 ng ml−1) (p = 0.01), but the difference was significant only after substantial centrifuging delays (96 h). Our study suggests no necessity for requiring immediate processing of blood samples after collection or for the choice of a tube type or assay.
Resumo:
Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.