992 resultados para 199-1219


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A generally rich radiolarian fauna ranging in age from Quaternary to early Eocene (Zone RP7) was found at five of the eight sites drilled during Ocean Drilling Program (ODP) Leg 199. Of particular interest are the stratigraphically complete assemblages that range in age from middle Miocene (Zone RN5) to early Eocene (Zone RP7), composites of Sites 1218, 1219, and 1220. At the same sites, multisensor track (MST) data show consistent cycles in gamma ray attenuation density, color, and carbonate content that can be correlated on a submeter scale from the early Miocene to early Eocene. In addition, the magnetic reversal records from these three sites allow construction of an absolute timescale. A series of 305 radiolarian morphologic first and last occurrences and evolutionary transitions for radiolarians were determined and correlated directly with the accompanying MST and paleomagnetic data, resulting in a detailed and accurate dating of events. Since many of the bioevents are found at more than one site, it was also possible to test their reliability within the study area. Twelve new species are described: Calocycletta (Calocycletta) anekathen, Dorcadospyris anastasis, Dorcadospyris copelata, Dorcadospyris cyclacantha, Dorcadospyris ombros, Dorcadospyris scambos, Eucyrtidium mitodes, Theocyrtis careotuberosa, Theocyrtis perpumila, Theocyrtis perysinos, Theocyrtis setanios, and Thyrsocyrtis (Pentalacorys) orthotenes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence for the dissolution of biogenic silica at the base of pelagic sections supports the hypothesis that much of the chert formed in the Pacific derives from the dissolution and reprecipitation of this silica by hydrothermal waters. As ocean bottom waters flow into and through the crust, they become warmer. Initially they remain less saturated with respect to dissolved silica than pore water in the overlying sediments. With the diffusion of heat, dissolved ions, and to some extent the advection of water itself, biogenic silica in the basal part of the sedimentary section is dissolved. Upon conductively cooling, these pore waters precipitate chert layers. The most common thickness for the basal silica-free zone (20 m) lies below the most common height of the top of the chert interval above basement (50 m). This mode of chert formation explains the frequent occurrence of chert layers at very shallow subbottom depths in pelagic sections of the Pacific. It is also consistent with the common occurrence of cherts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Oligocene magnetostratigraphy from ODP Sites 1218 and 1219 (Equatorial Pacific) has been obtained by measurements made on u-channel samples, augmented by about 221 discrete samples. U-channel samples were measured at 1 cm intervals and were stepwise demagnetized in alternating fields (AF) up to a maximum peak field of 80 mT. The magnetization directions were determined at 1 cm intervals by principal component analysis of demagnetization steps in the 20 to 60 mT peak field range. A similar treatment was carried out on the discrete samples, which confirmed the results obtained with u-channel measurements. Sites 1218 and 1219 were precisely correlated based on multisensor track, paleontological and shipboard magnetostratigraphic data; this correlation is substantiated by u-channel measurements. Although the magnetostratigraphy obtained from the u-channels is similar to the interpretation deduced from shipboard measurements based on blanket demagnetization at peak AF of 20 mT, the u-channel results are substantially more robust since many interpretative uncertainties are resolved by the stepwise demagnetization and higher stratigraphic resolution. The temporal resolution of u-channel-based magnetic stratigraphy in the Oligocene section of Sites 1218 and 1219 is better than 5 kyr, and it is therefore suitable for detection of brief polarity subchrons. However, in spite of the high resolution, we did not find any reversals corresponding to the numerous cryptochrons identified in this time span by Cande and Kent (1995, doi:10.1029/94JB03098).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative radiolarian assemblage analysis has been conducted on middle and upper Eocene sediments (Zones RP16 to RP18) from Ocean Drilling Program Site 1052 in order to establish the radiolarian magnetobiochronology and determine the nature of the faunal turnover across the middle/late Eocene boundary in the western North Atlantic Ocean. We recognize and calibrate forty-five radiolarian bioevents to the magneto- and cyclo-stratigraphy from Site 1052 to enhance the biochronologic resolution for the middle and late Eocene. Our data is compared to sites in the equatorial Pacific (Leg 199) to access the diachrony of biostratigraphic events. Eleven bioevents are good biostratigraphic markers for tropical/subtropical locations (south of 30°N). The primary markers (lowest occurrences of Cryptocarpium azyx and Calocyclas bandyca) which are tropical zonal boundary markers for Zones RP17 and RP18 provide robust biohorizons for correlation and age determination from the low to middle latitudes and between the Atlantic and Pacific Oceans. Some other radiolarian bioevents are highly diachronous (<1 million years) between oceanic basins. A significant faunal turnover of radiolarians is recognized within Chron C17n.3n (37.7 Ma) where 13 radiolarian species disappear rapidly in less than 100 kyr and 4 new species originate. The radiolarian faunal turnover coincides with a major extinction in planktonic foraminifera. We name the turnover phase, the Middle/Late Eocene Turnover (MLET). Assemblage analysis reveals the MLET to be associated with a decrease in low-mid latitude taxa and increase in cosmopolitan taxa and radiolarian accumulation rates. The MLET might be related to increased biological productivity rather than to surface-water cooling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition from the extreme global warmth of the early Eocene 'greenhouse' climate ~55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica ~34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from ~42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to ~1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid d26Mg values increase with depth by as much as 2 per mil. Because carbonates preferentially incorporate 24Mg (low d26Mg), the increase in pore-fluid d26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid d26Mg values decrease with depth by up to 2 per mil. The decline in pore-fluid d26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured d26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7 per mil depleted in d26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the studied sites, our results suggest that magnesium incorporated into clay minerals is enriched in d26Mg by 0 per mil to +1.25 per mil relative to the precipitating fluid. This work demonstrates the utility of magnesium isotopes as a tracer for magnesium sources/sinks in low-temperature aqueous systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 199, sediments were recovered from eight sites in the Central Pacific. Late Oligocene and early Miocene radiolarians are common to abundant and moderately well preserved in Cores 199-1218A-8H through 11H and 199-1219A-5H through 9H. More than 110 radiolarian species were encountered during this study. Of these species, 100 are identifiable forms and the rest are undescribed or unfamiliar forms. This report presents the relative abundances of described forms from the upper Oligocene to lower Miocene sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six samples from Sites 1219 and 1221 ranging in age from early Eocene to early Oligocene were analyzed for freely extractable lipids to determine whether the low organic carbon (Corg) sediments of the Eocene equatorial Pacific (Corg content typically 0.03%) are appropriate for biomarker studies. Only one sample from the Oligocene equatorial Pacific (Sample 199-1219A-13H-3, 50-54 cm) contained any biomarkers of interest to paleoceanography. The only lipids identified in the remaining samples appear to be contaminants from drilling or subsequent handling. Sample 199-1219A-13H-3, 50-54 cm, contained alkenone biomarkers specific to haptophyte algae that are used for estimating past mean annual sea-surface temperature (maSST). If the Holocene calibration of maSST is appropriate for the Oligocene, the estimated equatorial temperature is >=28.3°C, or at least 3°C warmer than modern equatorial maSST at a similar longitude.