992 resultados para 184-1148B
Resumo:
Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.
Resumo:
A 30 m.y. stable isotopic record of marine-deposited black carbon from regional terrestrial biomass burning from the northern South China Sea reveals photosynthetic pathway evolution for terrestrial ecosystems in the late Cenozoic. This record indicates that C3 plants negatively adjusted their isotopic discrimination and C4 plants appeared gradually as a component of land vegetation in East Asia since the early Miocene, a long time before sudden C4 expansion occurred during the late Miocene to the Pliocene. The changes in terrestrial ecosystems with time can be reasonably related to the evolution of East Asian monsoons, which are thought to have been induced by several intricate mechanisms during the late Cenozoic and could contribute significantly to the post-Miocene marine carbonate isotope decline.
Resumo:
Dinoflagellate stratigraphy is described for the section from 364.75 to 843.85 meters below seafloor (mbsf) at Site 1148 (Sections 184-1148A-40X-1 through 76X-6 and 184-1148B-39X-CC through 56X-1) in the South China Sea. Two assemblage zones and two subzones are defined, based on characteristics of the assemblages and lowest/highest occurrences of some key species. These are the Cleistosphaeridium diversispinosum Assemblage Zone (Zone A; Oligocene), with the Enneadocysta pectiniformis Subzone (Subzone A-1) and the Cordosphaeridium gracile Subzone (Subzone A-2), and the Polysphaeridium zoharyi Assemblage Zone (Zone B; early Miocene). The highest concurrent occurrence of Enneadocysta arcuata, Eneadocysta multicornuta, Homotryblium plectilum, and Homotryblium tenuispinosum delineates the upper boundary of Zone A, which appears to mark a hiatus. Subzone A-1 is of early Oligocene age, as evidenced by the highest occurrences of E. pectiniformis and Phthanoperidinium amoenum at the upper boundary of the subzone. Subzone A-2 is of late Oligocene age based on the highest occurrences of C. gracile and Wetzeliella gochtii close to the upper boundary of the subzone and the occurrence of Distatodinium ellipticum and Membranophoridium aspinatum within the subzone. Zone B is dated as early Miocene based on the lowest occurrences of Cerebrocysta satchelliae, Hystrichosphaeropsis obscura, Melitasphaeridium choanophorum, Membranilarnacia? picena, and Tuberculodinium vancampoae within the zone. The present assemblage zones/subzones are correlative to various degrees with coeval zones/assemblages from areas of high to low latitudes in terms of common key species. We have compared the species content of the assemblage Zones A and B, and the subzones A-1 and A-2, with coeval assemblage(s)/zone(s) described from many, often widely distant, high- and low-latitude regions of the world. These comparisons show that, to various degrees and aside from a number of key species, the coordinated presence of certain important species may also help to assign an age to a given assemblage.
Resumo:
Ocean Drilling Program sampling of the distal passive margin of South China at Sites 1147 and 1148 has yielded clay-rich hemipelagic sediments dating to 32 Ma (Oligocene), just prior to the onset of seafloor spreading in the South China Sea. The location of the drill sites offshore the Pearl River suggests that this river, or its predecessor, may have been the source of the sediment in the basin, which accounts for only not, vert, similar ~1.8% of the total Neogene sediment in the Asian marginal seas. A mean erosion depth of not, vert, similar ~1 km over the current Pearl River drainage basin is sufficient to account for the sediment volume on the margin. Two-dimensional backstripping of across-margin seismic profiles shows that sedimentation rates peaked during the middle Miocene (11-16 Ma) and the Pleistocene (since 1.8 Ma). Nd isotopic analysis of clays yielded epsilonNd values of -7.7 to -11.0, consistent with the South China Block being the major source of sediment. More positive epsilonNd values during and shortly after rifting compared to later sedimentation reflect preferential erosion at that time of more juvenile continental arc rocks exposed along the margin. As the drainage basin developed and erosion shifted from within the rift to the continental interior epsilonNd values became more negative. A rapid change in the clay mineralogy from smectite-dominated to illite dominated at not, vert, similar 15.5 Ma, synchronous with middle Miocene rapid sedimentation, mostly reflects a change to a wetter, more erosive climate. Evidence that the elevation of the Tibetan Plateau and erosion in the western Himalaya both peaked close to this time supports the suggestion that the Asian monsoon became much more intense at that time, much earlier than the 8.5 Ma age commonly accepted.
Resumo:
The Goggausee, in spite of its modest depth (Zmax = 12 metres), shows meromictic properties: autumn and spring circulation extend only to a depth of 8 metres. The water layers below about 10 metres are constantly oxygen-free, the critical zone with at least intermittent oxygen loss lies at a depth of between 6 and 10 metres. A limnological excursion in May 1974 offered an opportunity to investigate the daily vertical migration of the species Chaoborus flavicans with reference to its food supply of zooplankton as well as the chance to carry out some preliminary experiments on its rate of food intake. Among the studied features were the planktonic depth distribution of Chaoborus flavicans and the food intake of Chaoborus larvae under experimental conditions.