998 resultados para 18-177
Resumo:
By analogy with the present-day ocean, primary productivity of paleoceans can be reconstructed using calculations based on content of organic carbon in sediments and their accumulation rates. Results of calculations based on published data show that primary productivity of organic carbon, mass of phosphorus involved in the process, and content of phosphorus in ocean waters were relatively stable during Cenozoic and Late Mesozoic. Prior to precipitation on the seafloor together with biogenic detritus, dissolved phosphorus could repeatedly be involved in the biogeochemical cycle. Therefore, only less than 0.1% of phosphorus is retained in bottom sediments. Bulk phosphorus accumulation rate in ocean sediments is partly consistent with calculated primary productivity. Some epochs of phosphate accumulation also coincide with maxima of primary productivity and minima of the fossilization coefficient of organic carbon. The latter fact can testify to episodes of acceleration of organic matter mineralization and release of phosphorus from sediments leading to increase in the phosphorus reserve in paleoceans and phosphate accumulation in some places.
Resumo:
En el primer tomo no aparece la fecha de publicación
Resumo:
I have compiled CaCO3 mass accumulation rates (MARs) for the period 0-25 Ma for 144 Deep Sea Drilling Project and Ocean Drilling Program drill sites in the Pacific in order to investigate the history of CaCO3 burial in the world's largest ocean basin. This is the first synthesis of data since the beginning of the Ocean Drilling Program. Sedimentation rates, CaCO3 contents, and bulk density were estimated for 0.5 Myr time intervals from 0 to 14 Ma and for 1 Myr time intervals from 14 to 25 Ma using mostly data from Initial Reports volumes. There is surprisingly little coherence between CaCO3 MAR time series from different Pacific regions, although regional patterns exist. A transition from high to low CaCO3 MAR from 23-20 Ma is the only event common to the entire Pacific Ocean. This event is found worldwide. The most likely cause of lowered pelagic carbonate burial is a rising sea-level trend in the early Miocene. The central and eastern equatorial Pacific is the only region with adequate drill site coverage to study carbonate compensation depth (CCD) changes in detail for the entire Neogene. The latitude-dependent decrease in CaCO3 production away from the equator is an important defining factor of the regional CCD, which shallows away from the equatorial region. Examination of latitudinal transects across the equatorial region is a useful way to separate the effects of changes in carbonate production ('productivity') from changes in bottom water chemistry ('dissolution') upon carbonate burial.
Resumo:
Interest in chromosome 18 in essential hypertension comes from comparative mapping of rat blood pressure quantitative trait loci (QTL), familial orthostatic hypotensive syndrome studies, and essential hypertension pedigree linkage analyses indicating that a locus or loci on human chromosome 18 may play a role in hypertension development. To further investigate involvement of chromosome 18 in human essential hypertension, the present study utilized a linkage scan approach to genotype twelve microsatellite markers spanning human chromosome 18 in 177 Australian Caucasian hypertensive (HT) sibling pairs. Linkage analysis showed significant excess allele sharing of the D18S61 marker when analyzed with SPLINK (P=0.00012), ANALYZE (Sibpair) (P=0.0081), and also with MAPMAKER SIBS (P=0.0001). Similarly, the D18S59 marker also showed evidence for excess allele sharing when analyzed with SPLINK (P=0.016), ANALYZE (Sibpair) (P=0.0095), and with MAPMAKER SIBS (P = 0.014). The adenylate cyclase activating polypeptide 1 gene (ADCYAP1) is involved in vasodilation and has been co-localized to the D18S59 marker. Results testing a microsatellite marker in the 3′ untranslated region of ADCYAP1 in age and gender matched HT and normotensive (NT) individuals showed possible association with hypertension (P = 0.038; Monte Carlo P = 0.02), but not with obesity. The present study shows a chromosome 18 role in essential hypertension and indicates that the genomic region near the ADCYAP1 gene or perhaps the gene itself may be implicated. Further investigation is required to conclusively determine the extent to which ADCYAP1 polymorphisms are involved in essential hypertension. © 2003 Wiley-Liss, Inc.
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53′N, 36°29.55′E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18–14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1–14.5 kyr BP), indicated by δ18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative δ13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5–12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative δ13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7–8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5–5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.