998 resultados para 175-1082
Resumo:
We examine the link between organic matter degradation, anaerobic methane oxidation (AMO), and sulfate depletion and explore how these processes potentially influence dolomitization. We determined rates and depths of AMO and dolomite formation for a variety of organic-rich sites along the west African Margin using data from Ocean Drilling Program (ODP) Leg 175. Rates of AMO are calculated from the diffusive fluxes of CH4 and SO4, and rates of dolomite formation are calculated from the diffusive flux of Mg. We find that the rates of dolomite formation are relatively constant regardless of the depth at which it is forming, indicating that the diffusive fluxes of Mg and Ca are not limiting. Based upon the calculated log IAP values, log K(sp) values for dolomite were found to narrowly range between -16.1 and -16.4. Dolomite formation is controlled in part by competition between AMO and methanogenesis, which controls the speciation of dissolved CO2. AMO increases the concentration of CO3[2-] through sulfate reduction, favoring dolomite formation, while methanogenesis increases the pCO2 of the pore waters, inhibiting dolomite formation. By regulating the pCO2 and alkalinity, methanogenesis and AMO can regulate the formation of dolomite in organic-rich marine sediments. In addition to providing a mechanistic link between AMO and dolomite formation, our findings provide a method by which the stability constant of dolomite can be calculated in modern sediments and allow prediction of regions and depth domains in which dolomite may be forming.
Resumo:
Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.
Resumo:
Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid d26Mg values increase with depth by as much as 2 per mil. Because carbonates preferentially incorporate 24Mg (low d26Mg), the increase in pore-fluid d26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid d26Mg values decrease with depth by up to 2 per mil. The decline in pore-fluid d26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured d26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7 per mil depleted in d26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the studied sites, our results suggest that magnesium incorporated into clay minerals is enriched in d26Mg by 0 per mil to +1.25 per mil relative to the precipitating fluid. This work demonstrates the utility of magnesium isotopes as a tracer for magnesium sources/sinks in low-temperature aqueous systems.
Resumo:
A primary objective of Leg 175 was to investigate the upwelling history of the Benguela Current. Upwelling along the coast is found over the shelf in several well-established cells, as well as along the shelf-slope break, and extends over the 1000-m isobath. Streaming filaments along the coast also carry upwelled water off shore (Shannon, 1985). The upwelled nutrient-rich waters are sourced from the South Atlantic central water mass, which is a mixture of subtropical and subantarctic water masses. Below the central water mass lies Antarctic intermediate water (Shannon and Hunter, 1988, doi:10.2989/025776188784480735; Stramma and Peterson, 1989, doi:10.1175/1520-0485(1989)019<1440:GTITBC>2.0.CO;2). The upwelling system supports a robust marine community (Shannon and Pillar, 1986) where radiolarians are abundant (Bishop et al., 1978, doi:10.1016/0146-6291(78)90010-3). The endemic nature of radiolarians makes them useful in reconstructing the paleocirculation patterns. The biogeographic distribution of many species is limited by water-mass distribution. In a given geographic region, species may also have discrete depth habitats. However, their depth of occurrence can change worldwide because the depths of water masses vary with latitude (Boltovskoy, 1999). Consequently, species found at shallow depths at high latitudes (cold-water fauna) are observed deeper in the water column at lower latitudes. The low-latitude submergence of cold-water species broadens their distribution, resulting in species distributions that can cover multiple geographic regions (Kling, 1976, doi:10.1016/0011-7471(76)90880-9; Casey, doi:10.1016/0031-0182(89)90017-5; 1971; Boltovskoy, 1987, doi:10.1016/0377-8398(87)90014-4). Since radiolarian distribution is closely related to water-mass distribution and controlled by climatic conditions rather than geographic regions, similar assemblages characterize the equatorial, subtropical, transition, subpolar, and polar regions of ocean basins (Petrushevskaya, 1971a; Casey, 1989, doi:10.1016/0031-0182(89)90017-5; Boltovskoy, 1999). Numerous radiolarian species found in water masses in the Angola and Benguela Current systems have also been observed in plankton net samples, sediment traps, and surface-sediment studies in the Atlantic sector of the Southern Ocean, where they exhibited particular water-mass affinities (Abelmann, 1992a, doi:10.1007/BF00243107; Abelmann 1992b, doi:10.1007/BF00243108; Abelmann and Gowing, 1997, doi:10.1016/S0377-8398(96)00021-7). This report presents data on the radiolarian fauna recovered from Site 1082 sediments in the form of a survey of species reflecting the latitudinal migration of the Angola-Benguela Front and upwelling. The data constitute a time series of relative radiolarian abundances at very high resolution (every 20 cm) of the upper 12 m of Hole 1082A.
Resumo:
Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.