984 resultados para 175-1
Resumo:
Lipid compositions of sediments recovered during Ocean Drilling Program Leg 175 in the eastern South Atlantic reflect a variety of oceanographic and climatological environments. Most of the identified lipids can be ascribed to marine sources, notably haptophytes, eustigmatophytes, dinoflagellates, archaea, and diatoms. Elevated concentrations of cholesterol suggest zooplankton herbivory, characteristic for sites influenced by upwelling. At these sites, sulfurized highly branched isoprenoids from diatoms are also present in high amounts. Sterols, sterol ethers, hopanoids, and midchain hydroxy fatty acids could also be detected. Terrigenous lipids are n-alkanes, fatty acids, n-alcohols, and triterpenoid compounds like taraxerol and -amyrine. n-Alkanes, fatty acids, and n-alcohols are derived from leaf waxes of higher land plants and transported to the sea by airborne dust or fresh water. Triterpenoid compounds are most probably derived from mangroves and transported solely by rivers. Lipid compositions below the Congo low-salinity plume are strongly influenced by terrigenous material from the Congo River. Elevated organic carbon contents and predominantly marine lipid distributions at the Angola margin may indicate a highly productive plankton population, probably sustained by the Angola Dome. Sedimentary lipids in the Walvis Basin contain an upwelling signal, likely transported by the Benguela Current. Sedimentary lipids off Lüderitz Bay and in the southern Cape Basin are dominated by plankton lipids in high to intermediate amounts, reflecting persistent and seasonal upwelling, respectively.
Resumo:
We present sediment magnetic and chemical analysis of cyclic ocean sediments of the upwelling region of the Lower Congo Basin (equatorial Atlantic). We investigated two >100-k.y. intervals from Ocean Drilling Program Site 1075 to analyze the hysteresis properties, sources of magnetic susceptibility, anhysteretic remanent magnetizations, thermomagnetic behavior, and element concentrations of Fe, Ca, Ti, Mn, and K using an X-ray fluorescence (XRF) core scanner. The upper interval was sampled between 14 and 32 meters composite depth (mcd; 0.09-0.21 Ma) and the lower between 141 and 163 mcd (1.31-1.54 Ma) at a resolution of 20 cm, which represents a temporal resolution of 2.0 and 1.3 k.y., respectively. XRF core-scanner data were acquired at 5-cm intervals. The measurements show that ferri(o)magnetic minerals have no significant influence on the cyclicity of the magnetic susceptibility, which is dominated by paramagnetic and diamagnetic minerals and reflects changes of sediment input from the Congo River. The Fe, Ti, K, and Mn concentrations covary with the magnetic susceptibility where high concentrations of these elements correlate with intervals of high susceptibility and low concentrations with intervals of low susceptibility. The Ca counts correlate well with the calcium carbonate concentration but do not show the same cyclicity as the other elements or the susceptibility. With the exception of the Ca concentration, which is significantly higher in the upper interval, and the magnetic grain size, which indicates that less fine grained magnetite is present in the lower interval, no significant differences in the properties of the upper and the lower intervals were detected.
Resumo:
Site 1085 is located on the continental rise of southwest Africa at a water depth of 1713 m off the mouth of the Orange River in the Cape Basin. The site is part of the suite of locations drilled during Leg 175 on the Africa margin to reconstruct the onset and evolution of the elevated biological productivity associated with the Benguela Current upwelling system (Wefer, Berger, Richter, et al., 1998, doi:10.2973/odp.proc.ir.175.1998). Three sediment samples were collected per section from Cores 170-1085A-28H through 45X (251-419 mbsf) to provide a survey of the sediment record of paleoproductivity from the middle late Miocene to the early Pliocene (~8.7-4.7 Ma), which is a period that includes the postulated northward migration and intensification of the Benguela Current and the establishment of modern circulation off southwest Africa (Siesser, 1980; Diester-Haass et al., 1992; Berger et al., 1998). Core 170-1085A-30H (270-279 mbsf) had essentially no recovery; this coring gap was filled with samples from Cores 170-1085B-29H and 30H (261-280 mbsf). The results of measurements of multiple paleoproductivity proxies are summarized in this report. Included in these proxies are the radiolarian, foraminiferal, and echinoderm components of the sand-sized sediment fraction. Opal skeletons of radiolarians (no diatoms were found) relate to paleoproductivity and water mass chemistry (Summerhayes et al., 1995, doi:10.1016/0079-6611(95)00008-5; Lange and Berger, 1993, doi:10.2973/odp.proc.sr.130.011.1993; Nelson et al., 1995, doi:10.1029/95GB01070). The accumulation rates of benthic foraminifers are useful proxies for paleoproductivity (Herguera and Berger, 1991, doi:10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2; Nees, 1997, doi:10.1016/S0031-0182(97)00012-6; Schmiedl and Mackensen, 1997, doi:10.1016/S0031-0182(96)00137-X) because these fauna subsist on organic matter exported from the photic zone. Echinoderms also depend mainly on food supply from the photic zone (Gooday and Turley, 1990), and their accumulation rates are an additional paleoproductivity proxy. Concentrations of calcium carbonate (CaCO3) and organic carbon in sediment samples are fundamental measures of paleoproductivity (e.g., Meyers, 1997, doi:10.1016/S0146-6380(97)00049-1). In addition, organic matter atomic carbon/nitrogen (C/N) ratios and delta13C values can be used to infer the origin of the organic matter contained within the sediments and to explore some of the factors affecting its preservation and accumulation (Meyers, 1994, doi:10.1016/0009-2541(94)90059-0).
Resumo:
An astronomically calibrated age model for the Pliocene section of Ocean Drilling Program Leg 175 Cape Basin Site 1085 based on magnetic susceptibility data was developed using shipboard biostratigraphic datums. The composite core magnetic susceptibility record was compiled using shipboard correlations between Holes 1085A and 1085B and then tuned to the record of orbital variations in eccentricity to generate an orbitally tuned age model. Magnetic susceptibility apparently records climate variations in the Cape Basin. Strong power spectra values at the 100- and 400-k.y. frequency suggest an orbital control on the beat of Pliocene climate change in the Cape Basin.
Resumo:
Upwelling along the western coast of Africa south of the equator may be partitioned into three major areas, each having its own dynamics and history: (1) the eastern equatorial region, comprising the Congo Fan and the area of Mid-Angola; (2) the Namibia upwelling system, extending from the Walvis Ridge to Lüderitz; and (3) the Cape Province region, where upwelling is subdued. The highest nutrient contents in thermocline waters are in the northern region, the lowest in the southern one. Wind effects are at a maximum near the southern end of the Namibia upwelling system, and maximum productivity occurs near Walvis Bay, where the product between upwelling rate and nutrient content of upwelled waters is at a maximum. In the Congo/Angola region, opal tends to follow organic carbon quite closely in the Quaternary record. However, organic carbon has a strong precessional component, while opal does not. Despite relatively low opal content, sediments off Angola show the same patterns as those off the Congo; thus, they are part of the same regime. The spectrum shows nonlinear interference patterns between high- and low-latitude forcing, presumably tied to thermocline fertility and wind. On Walvis Ridge, as in the Congo-Angola region, the organic matter record behaves normally; that is, supply is high during glacial periods. In contrast, interglacial periods are favorable for opal deposition. The pattern suggests reduction in silicate content of the thermocline during glacial periods. The reversed phase (opal abundant during interglacials) persists during the entire Pleistocene and can be demonstrated deep into the Pliocene, not just on Walvis Ridge but all the way to the Oranje River and off the Cape Province. From comparison with other regions, it appears that silicate is diminished in the global thermocline, on average, whenever winds become strong enough to substantially shorten the residence time of silicate in upper waters (Walvis Hypothesis, solving the Walvis Paradox of reversed phase in opal deposition). The central discovery during Leg 175 was the documentation of a late Pliocene opal maximum for the entire Namibia upwelling system (early Matuyama Diatom Maximum [MDM]). The maximum is centered on the period between the end of the Gauss Chron and the beginning of the Olduvai Chron. A rather sharp increase in both organic matter deposition and opal deposition occurs near 3 Ma in the middle of the Gauss Chron, in association with a series of major cooling steps. As concerns organic matter, high production persists at least to 1 Ma, when there are large changes in variability, heralding subsequent pulsed production periods. From 3 to 2 Ma, organic matter and opal deposition run more or less parallel, but after 2 Ma opal goes out of phase with organic matter. Apparently, this is the point when silicate becomes limiting to opal production. Thus, the MDM conundrum is solved by linking planetary cooling to increased mixing and upwelling (ramping up to the MDM) and a general removal of silicate from the upper ocean through excess precipitation over global supply (ramping down from the MDM). The hypothesis concerning the origin of the Namibia opal acme or MDM is fundamentally the same as the Walvis Hypothesis, stating that glacial conditions result in removal of silicate from the thermocline (and quite likely from the ocean as a whole, given enough time). The Namibia opal acme, and other opal maxima in the latest Neogene in other regions of the ocean, marks the interval when a cooling ocean selectively removes the abundant silicate inherited from a warm ocean. When the excess silicate is removed, the process ceases. According to the data gathered during Leg 175, major upwelling started in the late part of the late Miocene. Presumably, this process contributed to the drawing down of carbon dioxide from the atmosphere, helping to prepare the way for Northern Hemisphere glaciation.
Resumo:
A multiproxy approach including the use of stable isotopes, magnetic characterization analyses, and organic geochemistry has been adopted to consider factors such as productivity and terrigenous input over the past 1.5 m.y. at two areas off the western coast of Africa. These factors can, in turn, be used to consider variability in ocean circulation and upwelling in addition to changes in climate on the African continent. In particular, studies focused on the influence of glacial-interglacial cycles and evidence for the mid-Pleistocene revolution (MPR), a complex change in climate that occurred at ~1 Ma. A comparison of the records from the two areas drilled during Ocean Drilling Program Leg 175, the Congo Basin, at a latitude of 5°S (Holes 1076A and 1077A), and the Walvis Ridge, at 17°S (Hole 1081A), demonstrates that these sites are affected by different localized factors. The sites in the Congo Basin are strongly influenced by freshwater and sediment from the Congo River, whereas the site at the Walvis Ridge is located in the center of oceanic upwelling and contains a more marine signal. Evidence also suggests that the two sites responded differently to both long- and short-term climatic variations. In particular, the response at the Walvis Ridge to the MPR occurred over an extended period, from 1.1 to 0.8 Ma, and was associated with a change in the dominant source of terrigenous input to the site in conjunction with a change in the productivity signal. In the Congo Basin, the response to the MPR was more rapid, occurring between 0.9 and 0.8 Ma. During this period, the influence of the Congo River became significant. However, productivity records only began to respond toward the end of this interval, at 0.8 Ma.
Resumo:
Late Quaternary fluctuations in the intensity of Congo River freshwater load were reconstructed using three different proxies (marine and freshwater diatoms, and the delta18O record of Globigerinoides ruber) preserved in the sediments of Ocean Drilling Program (ODP) Site 1077, located at the northern rim of the Congo River fan (5°10'S, 10°26'E). An abrupt change in the diatom assemblage is evident at Termination II: a two- to four-fold increase in (a) the relative abundance of a marine planktonic diatom tolerant of low salinity conditions (Cyclotella litoralis), and (b) in the concentration of freshwater diatoms. The microfossil data suggest a change in the environmental conditions surrounding Site 1077 from predominantly marine to mixed marine/brackish/fresh. The delta18O record of the planktic foraminifera G. ruber (pink) revealed negative deviations from the global oxygen isotope signal since Termination II which occurred during warm stage 1 and substages 3.2, 5.1, 5.3, and 5.5. Comparison of the isotopic signal of ODP Site 1077 with the record from a pelagic location (core GeoB1041 at 3°48'S, 7°05'W) confirms these results. The construction of an artificial delta18O curve using alkenone-derived sea surface temperature (SST) data from a nearby core (GeoB1008 at 6°S, 10°E) allowed us to estimate salinity and temperature effects on the ODP Site 1077 isotopic signal. Although increased SSTs may account for lighter delta18O values during warmer periods, they do not explain the extremely light values documented in the sediments of Site 1077. We used the oxygen isotope difference (Delta delta18O) between our site and GeoB1041 as a proxy for freshwater input. A general trend in the Delta delta18O was observed, with more negative values since Termination II. In addition, conspicuous Delta delta18O negative pulses coincided with periods of northern hemisphere summer insolation maxima over the African continent, suggesting an increase in the freshwater discharge from the Congo River due to enhanced precipitation on the hinterland. Here we propose that the abrupt change in environmental conditions at Site 1077 since Termination II is a consequence of a major reorganization in the depositional environment of the Congo River delta. This reorganization involved sustained equatorward displacement of the Angola-Benguela Front causing a northward deflection of the Congo River plume thus moving plume waters further north than normal and over Site 1077.