999 resultados para 156-947
Resumo:
This study was designed to assess the effect of GB virus (GBV)-C on the immune response to human immunodeficiency virus (HIV) in chronically HIV-infected and HIV- hepatitis C virus (HCV)-co-infected patients undergoing antiretroviral therapy. A cohort of 159 HIV-seropositive patients, of whom 52 were HCV-co-infected, was included. Epidemiological data were collected and virological and immunological markers, including the production of interferon gamma (IFN-γ) and interleukin (IL)-2 by CD4, CD8 and Tγδ cells and the expression of the activation marker, CD38, were assessed. A total of 65 patients (40.8%) presented markers of GBV-C infection. The presence of GBV-C did not influence HIV and HCV replication or TCD4 and TCD8 cell counts. Immune responses, defined by IFN-γ and IL-2 production and CD38 expression did not differ among the groups. Our results suggest that neither GBV-C viremia nor the presence of E2 antibodies influence HIV and HCV viral replication or CD4 T cell counts in chronically infected patients. Furthermore, GBV-C did not influence cytokine production or CD38-driven immune activation among these patients. Although our results do not exclude a protective effect of GBV-C in early HIV disease, they demonstrate that this effect may not be present in chronically infected patients, who represent the majority of patients in outpatient clinics.
Resumo:
RESUME Les gènes des PPARs jouent des rôles importants dans la régulation du métabolisme énergétique, lipidique et glucidique. Le présent travail, caractérise et analyse les défauts placentaires responsables de la mort embryonnaire des souris mutantes pour PPARβ et pour PPARγ, entre le jour E9.5 et E10.5. Les placentas issus d'embryons PPARP présentent un sévère retard de croissance, alors que les placentas mutants PPARγ montrent de graves défauts vasculaires. Nous montrons que les placentas issus d'embryons PPARβ-/-, au jour E9.5 présentent une réduction prononcée de la couche de cellules géantes, associée à une diminution des niveaux de protéines exprimées par les cellules géantes, tel que le placenta lactogène-I et la « proliferin ». Par ailleurs, nous montrons que le traitement d'un lignée trophoblastique par un ligand spécifique de PPARP augmente considérablement leur différentiation en cellules géantes. Cette différentiation dépendante de la voie de signalisation P13-kinase, s'accompagne d'une élévation de l'expression de l'ADRP, une protéine de structure associée aux vésicules lipidiques. Ainsi nous démontrons que PPAR5 est un régulateur majeur de la différentiation des cellules géantes, lesquelles sont primordiales aussi bien pour l'établissement de la structure placentaire, que pour la fonction endocrine. Par contre, les placentas PPARγ-/- présentent un défaut de vascularisation. Le niveau d'une protéine anti-angiogénique, la « proliferin-related protein », est très basse et ne peut pas contre-balancer l'élévation normale de la protéine pro-angiogénique « proliferin ». La formation des vaisseaux se trouve alors altérée. Ainsi, PPARγ constitue un régulateur majeur de l'activité anti-angiogénique. En conclusion, ce travail fournit de nouveaux éléments sur le rôle complémentaires de PPARβet PPARγ dans les événements complexes qui régissent le développement placentaire. SUMMARY Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors involved in energy homeostasis and growth. Herein, we characterize the placental defects that cause embryonic lethality around E9.5/E10.5 in PPARβ- and in PPARγ-deficient mouse lines. Most but not all PPARβ-null mutants die around E9.5/E10.5 with severe growth retardation. The placentas from PPARβ-/- embryos at E9.5 exhibit a strongly reduced giant cell layer, associated with reduced levels of proteins expressed by giant cells such as Placental lactogen-I and Proliferin. Ectopic treatment of a rat trophoblast cell line with PPARβ ligand markedly accelerated PI3 kinase-dependent giant cell differentiation. In addition, we demonstrate that ADRP, a pen-related lipid droplet-bound protein, is up-regulated by PPARβ in differentiated Rcho-1 cells. These results indicate that PPARβ is a crucial regulator of the differentiation secondary giant cells, which play a major role in the establishment of the placental structure as well as an important endocrine function. In contrast, the main alteration of the PPARγ-null placentas concerns the vasculogenesis. We show that in these placentas, the level of the anti-angiogenic proliferin-related protein is very low, and cannot balance the normal elevation of the pro-angiogenic proliferin expression, leading to the defective placental vessel formation. Consistently, the dramatic increase of PPARγ expression in late stage of gestation in wild-type mice is likely a major regulator of the anti-angiogenic activity, particularly important at the end of the pregnancy. This work emphasizes the important and complementary roles of PPARβ and PPARγ in mouse placental development and provides new tools for understanding the complex regulatory events that governs placental development and function. Understanding the function of PPARβ and PPARγ are of crucial interest with respect to human placental development and associated pathologies.
Resumo:
Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.
Resumo:
T-cell development depends upon interactions between thymocytes and thymic epithelial cells (TECs). The engagement of delta-like 4 (DL4) on TECs by Notch1 expressed by blood-borne BM-derived precursors is essential for T-cell commitment in the adult thymus. In contrast to the adult, the earliest T-cell progenitors in the embryo originate in the fetal liver and migrate to the nonvascularized fetal thymus via chemokine signals. Within the fetal thymus, some T-cell precursors undergo programmed TCRγ and TCRδ rearrangement and selection, giving rise to unique γδ T cells. Despite these fundamental differences between fetal and adult T-cell lymphopoiesis, we show here that DL4-mediated Notch signaling is essential for the development of both αβ and γδ T-cell lineages in the embryo. Deletion of the DL4 gene in fetal TECs results in an early block in αβ T-cell development and a dramatic reduction of all γδ T-cell subsets in the fetal thymus. In contrast to the adult, no dramatic deviation of T-cell precursors to alternative fates was observed in the fetal thymus in the absence of Notch signaling. Taken together, our data reveal a common requirement for DL4-mediated Notch signaling in fetal and adult thymopoiesis.
Resumo:
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists used to treat type 2 diabetes. TZD treatment induces side effects such as peripheral fluid retention, often leading to discontinuation of therapy. Previous studies have shown that PPARγ activation by TZD enhances the expression or function of the epithelial sodium channel (ENaC) through different mechanisms. However, the effect of TZDs on ENaC activity is not clearly understood. Here, we show that treating Xenopus laevis oocytes expressing ENaC and PPARγ with the TZD rosiglitazone (RGZ) produced a twofold increase of amiloride-sensitive sodium current (Iam), as measured by two-electrode voltage clamp. RGZ-induced ENaC activation was PPARγ-dependent since the PPARγ antagonist GW9662 blocked the activation. The RGZ-induced Iam increase was not mediated through direct serum- and glucocorticoid-regulated kinase (SGK1)-dependent phosphorylation of serine residue 594 on the human ENaC α-subunit but by the diminution of ENaC ubiquitination through the SGK1/Nedd4-2 pathway. In accordance, RGZ increased the activity of ENaC by enhancing its cell surface expression, most probably indirectly mediated through the increase of SGK1 expression.
Resumo:
Medulloblastoma is the most common malignant brain tumor in children and is associated with a poor outcome. We were interested in gaining further insight into the potential of targeting the human kinome as a novel approach to sensitize medulloblastoma to chemotherapeutic agents. A library of small interfering RNA (siRNA) was used to downregulate the known human protein and lipid kinases in medulloblastoma cell lines. The analysis of cell proliferation, in the presence or absence of a low dose of cisplatin after siRNA transfection, identified new protein and lipid kinases involved in medulloblastoma chemoresistance. PLK1 (polo-like kinase 1) was identified as a kinase involved in proliferation in medulloblastoma cell lines. Moreover, a set of 6 genes comprising ATR, LYK5, MPP2, PIK3CG, PIK4CA, and WNK4 were identified as contributing to both cell proliferation and resistance to cisplatin treatment in medulloblastoma cells. An analysis of the expression of the 6 target genes in primary medulloblastoma tumor samples and cell lines revealed overexpression of LYK5 and PIK3CG. The results of the siRNA screen were validated by target inhibition with specific pharmacological inhibitors. A pharmacological inhibitor of p110γ (encoded by PIK3CG) impaired cell proliferation in medulloblastoma cell lines and sensitized the cells to cisplatin treatment. Together, our data show that the p110γ phosphoinositide 3-kinase isoform is a novel target for combinatorial therapies in medulloblastoma.
Resumo:
The radioactive concentrations of (166m)Ho, (134)Cs and (133)Ba solutions have been standardised using a 4πβ-4πγ coincidence counting system we have recently set up. The detection in the beta channel is performed using various geometries of a UPS-89 plastic scintillator optically coupled to a selected low-noise 1in. diameter photomultiplier tube. The light-tight thin capsule that encloses this beta detector is housed within the well of a 5in.×5in. NaI(Tl) monocrystal detector. The beta detection efficiency can be varied either by optical filtering or electronic discrimination when the electrons loose all their energy in the plastic scintillator. This 4πβ-4πγ coincidence system improves on our 4πβ(PC)-γ system in that its sample preparation is less labour intensive, it yields larger beta- and gamma-counting efficiencies thus enabling the standardisation of low activity sources with good statistics in reasonable time, and it makes standardising short-lived radionuclides easier. The resulting radioactive concentrations of (166m)Ho, (134)Cs and (133)Ba are found to agree with those measured with other primary measurement methods thus validating our 4πβ-4πγ coincidence counting system.
Resumo:
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.
Resumo:
BACKGROUND AND OBJECTIVES: Matrix γ-carboxyglutamate protein (MGP), a vitamin K-dependent protein, is recognized as a potent local inhibitor of vascular calcification. Studying patients with Keutel syndrome (KS), a rare autosomal recessive disorder resulting from MGP mutations, provides an opportunity to investigate the functions of MGP. The purpose of this study was (i) to investigate the phenotype and the underlying MGP mutation of a newly identified KS patient, and (ii) to investigate MGP species and the effect of vitamin K supplements in KS patients. METHODS: The phenotype of a newly identified KS patient was characterized with specific attention to signs of vascular calcification. Genetic analysis of the MGP gene was performed. Circulating MGP species were quantified and the effect of vitamin K supplements on MGP carboxylation was studied. Finally, we performed immunohistochemical staining of tissues of the first KS patient originally described focusing on MGP species. RESULTS: We describe a novel homozygous MGP mutation (c.61+1G>A) in a newly identified KS patient. No signs of arterial calcification were found, in contrast to findings in MGP knockout mice. This patient is the first in whom circulating MGP species have been characterized, showing a high level of phosphorylated MGP and a low level of carboxylated MGP. Contrary to expectations, vitamin K supplements did not improve the circulating carboxylated mgp levels. phosphorylated mgp was also found to be present in the first ks patient originally described. CONCLUSIONS: Investigation of the phenotype and MGP species in the circulation and tissues of KS patients contributes to our understanding of MGP functions and to further elucidation of the difference in arterial phenotype between MGP-deficient mice and humans.
Resumo:
Activation of the transcription factor PPARγ by the n-3 fatty acid docosahexaenoic acid (DHA) is implicated in controlling proinflammatory cytokine secretion, but the intracellular signaling pathways engaged by PPARγ are incompletely characterized. Here, we identify the adapter-encoding gene SOCS3 as a critical transcriptional target of PPARγ. SOCS3 promoter binding and gene transactivation by PPARγ was associated with a repression in differentiation of proinflammatory T-helper (TH)17 cells. Accordingly, TH17 cells induced in vitro displayed increased SOCS3 expression and diminished capacity to produce interleukin (IL)-17 following activation of PPARγ by DHA. Furthermore, naïve CD4 T cells derived from mice fed a DHA-enriched diet displayed less capability to differentiate into TH17 cells. In two different mouse models of cancer, DHA prevented tumor outgrowth and angiogenesis in an IL-17-dependent manner. Altogether, our results uncover a novel molecular pathway by which PPARγ-induced SOCS3 expression prevents IL-17-mediated cancer growth. Cancer Res; 73(12); 3578-90. ©2013 AACR.
Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression.
Resumo:
We evaluated the effects of dipeptidyl peptidase-IV (DPPIV), and its inhibitor, vildagliptin, on adipogenesis and lipolysis in a pre-adipocyte murine cell line (3T3-L1). The exogenous rDPPIV increased lipid accumulation and PPAR-γ expression, whereas an inhibitor of DPPIV, the anti-diabetic drug vildagliptin, suppresses the stimulatory role of DPPIV on adipogenesis and lipid accumulation, but had no effect on lipolysis. NPY immunoneutralization or NPY Y(2) receptor blockage inhibited DPPIV stimulatory effects on lipid accumulation, collectively, indicating that DPPIV has an adipogenic effect through NPY cleavage and subsequent NPY Y(2) activation. Vildagliptin inhibits PPAR-γ expression and lipid accumulation without changing lipolysis, suggesting that this does not impair the ability of adipose tissue to store triglycerides inside lipid droplets. These data indicate that DPPIV and NPY interact on lipid metabolism to promote adipose tissue depot.
Resumo:
BACKGROUND/AIMS: Thiazolidinediones (TZDs, like rosiglitazone (RGZ)) are peroxisome proliferator-activated receptor γ (PPARγ) agonists used to treat type 2 diabetes. Clinical limitations include TZD-induced fluid retention and body weight (BW) increase, which are inhibited by amiloride, an epithelial-sodium channel (ENaC) blocker. RGZ-induced fluid retention is maintained in mice with αENaC knockdown in the collecting duct (CD). Since ENaC in the connecting tubule (CNT) rather than in CD appears to be critical for normal NaCl retention, we aimed to further explore the role of ENaC in CNT in RGZ-induced fluid retention. METHODS: Mice with conditional inactivation of αENaC in both CNT and CD were used (αENaC lox/lox AQP2-Cre; 'αENaC-CNT/CD-KO') and compared with littermate controls (αENaC lox/lox mice; 'WT'). BW was monitored and total body water (TBW) and extracellular fluid volume (ECF) were determined by bioelectrical impedance spectroscopy (BIS) before and after RGZ (320 mg/kg diet for 10 days). RESULTS: On regular NaCl diet, αENaC-CNT/CD-KO had normal BW, TBW, ECF, hematocrit, and plasma Na(+), K(+), and creatinine, associated with an increase in plasma aldosterone compared with WT. Challenging αENaC-CNT/CD-KO with a low NaCl diet unmasked impaired NaCl and K homeostasis, consistent with effective knockdown of αENaC. In WT, RGZ increased BW (+6.1%), TBW (+8.4%) and ECF (+10%), consistent with fluid retention. These changes were significantly attenuated in αENaC-CNT/CD-KO (+3.4, 1.3, and 4.3%). CONCLUSION: Together with the previous studies, the current results are consistent with a role of αENaC in CNT in RGZ-induced fluid retention, which dovetails with the physiological relevance of ENaC in this segment. © 2014 S. Karger AG, Basel.